IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i12p2744-2765.html
   My bibliography  Save this article

A Fuzzy‐Based Risk Assessment Framework for Autonomous Underwater Vehicle Under‐Ice Missions

Author

Listed:
  • Tzu Yang Loh
  • Mario P. Brito
  • Neil Bose
  • Jingjing Xu
  • Kiril Tenekedjiev

Abstract

The use of autonomous underwater vehicles (AUVs) for various scientific, commercial, and military applications has become more common with maturing technology and improved accessibility. One relatively new development lies in the use of AUVs for under‐ice marine science research in the Antarctic. The extreme environment, ice cover, and inaccessibility as compared to open‐water missions can result in a higher risk of loss. Therefore, having an effective assessment of risks before undertaking any Antarctic under‐ice missions is crucial to ensure an AUV's survival. Existing risk assessment approaches predominantly focused on the use of historical fault log data of an AUV and elicitation of experts’ opinions for probabilistic quantification. However, an AUV program in its early phases lacks historical data and any assessment of risk may be vague and ambiguous. In this article, a fuzzy‐based risk assessment framework is proposed for quantifying the risk of AUV loss under ice. The framework uses the knowledge, prior experience of available subject matter experts, and the widely used semiquantitative risk assessment matrix, albeit in a new form. A well‐developed example based on an upcoming mission by an ISE‐explorer class AUV is presented to demonstrate the application and effectiveness of the proposed framework. The example demonstrates that the proposed fuzzy‐based risk assessment framework is pragmatically useful for future under‐ice AUV deployments. Sensitivity analysis demonstrates the validity of the proposed method.

Suggested Citation

  • Tzu Yang Loh & Mario P. Brito & Neil Bose & Jingjing Xu & Kiril Tenekedjiev, 2019. "A Fuzzy‐Based Risk Assessment Framework for Autonomous Underwater Vehicle Under‐Ice Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2744-2765, December.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:12:p:2744-2765
    DOI: 10.1111/risa.13376
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13376
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. G. Eleye‐Datubo & A. Wall & J. Wang, 2008. "Marine and Offshore Safety Assessment by Incorporative Risk Modeling in a Fuzzy‐Bayesian Network of an Induced Mass Assignment Paradigm," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 95-112, February.
    2. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    3. Palinkas, Lawrence A., 1992. "Going to extremes: The cultural context of stress, illness and coping in Antarctica," Social Science & Medicine, Elsevier, vol. 35(5), pages 651-664, September.
    4. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    5. Stephen D. Unwin, 1986. "A Fuzzy Set Theoretic Foundation for Vagueness in Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 6(1), pages 27-34, March.
    6. Brito, Mario & Griffiths, Gwyn, 2016. "A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 55-67.
    7. Refaul Ferdous & Faisal Khan & Rehan Sadiq & Paul Amyotte & Brian Veitch, 2011. "Fault and Event Tree Analyses for Process Systems Risk Analysis: Uncertainty Handling Formulations," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 86-107, January.
    8. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    9. Chang, Yu-Hern & Yeh, Chung-Hsing & Wang, Shih-Yi, 2007. "A survey and optimization-based evaluation of development strategies for the air cargo industry," International Journal of Production Economics, Elsevier, vol. 106(2), pages 550-562, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzu Yang Loh & Mario P. Brito & Neil Bose & Jingjing Xu & Kiril Tenekedjiev, 2020. "Fuzzy System Dynamics Risk Analysis (FuSDRA) of Autonomous Underwater Vehicle Operations in the Antarctic," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 818-841, April.
    2. Tu Duong Le Duy & Laurence Dieulle & Dominique Vasseur & Christophe Bérenguer & Mathieu Couplet, 2013. "An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications," Journal of Risk and Reliability, , vol. 227(5), pages 471-490, October.
    3. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Luis Serrano-Gomez & Jose Ignacio Munoz-Hernandez, 2019. "Monte Carlo approach to fuzzy AHP risk analysis in renewable energy construction projects," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    5. Brouwer, Sander R. & Al-Jibouri, Saad H.S. & Cárdenas, Ibsen Chivatá & Halman, Johannes I.M., 2018. "Towards analysing risks to public safety from wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 77-87.
    6. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    7. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    8. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    9. Bas Kolen & Matthijs Kok & Ira Helsloot & Bob Maaskant, 2013. "EvacuAid: A Probabilistic Model to Determine the Expected Loss of Life for Different Mass Evacuation Strategies During Flood Threats," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1312-1333, July.
    10. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    11. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    12. Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
    13. Fabio Salamanca-Buentello & Mary V Seeman & Abdallah S Daar & Ross E G Upshur, 2020. "The ethical, social, and cultural dimensions of screening for mental health in children and adolescents of the developing world," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-25, August.
    14. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    15. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    16. Hee Kyung Kim & Chang Won Lee, 2019. "Development of a Cost Forecasting Model for Air Cargo Service Delay Due to Low Visibility," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    17. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    18. Majda Ćesić & Katarina Rogulj & Jelena Kilić Pamuković & Andrija Krtalić, 2024. "A Systematic Review on Fuzzy Decision Support Systems and Multi-Criteria Analysis in Urban Heat Island Management," Energies, MDPI, vol. 17(9), pages 1-41, April.
    19. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    20. Heiskanen, Aleksi & Hurmekoski, Elias & Toppinen, Anne & Näyhä, Annukka, 2022. "Exploring the unknowns – State of the art in qualitative forest-based sector foresight research," Forest Policy and Economics, Elsevier, vol. 135(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:12:p:2744-2765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.