IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i1p194-209.html
   My bibliography  Save this article

Incremental Sampling Methodology: Applications for Background Screening Assessments

Author

Listed:
  • Penelope S. Pooler
  • Philip E. Goodrum
  • Deana Crumbling
  • Leah D. Stuchal
  • Stephen M. Roberts

Abstract

This article presents the findings from a numerical simulation study that was conducted to evaluate the performance of alternative statistical analysis methods for background screening assessments when data sets are generated with incremental sampling methods (ISMs). A wide range of background and site conditions are represented in order to test different ISM sampling designs. Both hypothesis tests and upper tolerance limit (UTL) screening methods were implemented following U.S. Environmental Protection Agency (USEPA) guidance for specifying error rates. The simulations show that hypothesis testing using two‐sample t‐tests can meet standard performance criteria under a wide range of conditions, even with relatively small sample sizes. Key factors that affect the performance include unequal population variances and small absolute differences in population means. UTL methods are generally not recommended due to conceptual limitations in the technique when applied to ISM data sets from single decision units and due to insufficient power given standard statistical sample sizes from ISM.

Suggested Citation

  • Penelope S. Pooler & Philip E. Goodrum & Deana Crumbling & Leah D. Stuchal & Stephen M. Roberts, 2018. "Incremental Sampling Methodology: Applications for Background Screening Assessments," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 194-209, January.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:1:p:194-209
    DOI: 10.1111/risa.12820
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12820
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Young, Derek S., 2010. "tolerance: An R Package for Estimating Tolerance Intervals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Al-Kandari & Kingsley Adjenughwure & Kyriakos Papadopoulos, 2020. "A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models," Mathematics, MDPI, vol. 8(9), pages 1-10, August.
    2. Ilaria Lucrezia Amerise, 2023. "A direct method for constructing distribution-free tolerance regions," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 3941-3954, October.
    3. Thurnher, Christopher & Klopf, Mario & Hasenauer, Hubert, 2017. "MOSES – A tree growth simulator for modelling stand response in Central Europe," Ecological Modelling, Elsevier, vol. 352(C), pages 58-76.
    4. Shin‐Fu Tsai, 2020. "Approximate two‐sided tolerance intervals for normal mixture distributions," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 367-382, September.
    5. Mathew, Thomas & Young, Derek S., 2013. "Fiducial-based tolerance intervals for some discrete distributions," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 38-49.
    6. Kedai Cheng & Derek S. Young, 2023. "An Approach for Specifying Trimming and Winsorization Cutoffs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 299-323, June.
    7. Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
    8. Kyung Serk Cho & Hon Keung Tony Ng, 2021. "Tolerance intervals in statistical software and robustness under model misspecification," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-49, December.
    9. Young, D.S., 2013. "Approximate tolerance limits for Zipf–Mandelbrot distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1702-1711.
    10. Chen, Cathy W.S. & Lin, Tsai-Yu, 2017. "Nonparametric tolerance limits for pair trading," Finance Research Letters, Elsevier, vol. 21(C), pages 1-9.
    11. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    12. Tom Burr & Elisa Bonner & Kamil Krzysztoszek & Claude Norman, 2019. "Setting Alarm Thresholds in Measurements with Systematic and Random Errors," Stats, MDPI, vol. 2(2), pages 1-13, May.
    13. Ngan Hoang-Nguyen-Thuy & K. Krishnamoorthy, 2021. "A method for computing tolerance intervals for a location-scale family of distributions," Computational Statistics, Springer, vol. 36(2), pages 1065-1092, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:1:p:194-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.