IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v8y2021i1d10.1186_s40488-021-00123-2.html
   My bibliography  Save this article

Tolerance intervals in statistical software and robustness under model misspecification

Author

Listed:
  • Kyung Serk Cho

    (Columbia University)

  • Hon Keung Tony Ng

    (Southern Methodist University)

Abstract

A tolerance interval is a statistical interval that covers at least 100ρ% of the population of interest with a 100(1−α)% confidence, where ρ and α are pre-specified values in (0, 1). In many scientific fields, such as pharmaceutical sciences, manufacturing processes, clinical sciences, and environmental sciences, tolerance intervals are used for statistical inference and quality control. Despite the usefulness of tolerance intervals, the procedures to compute tolerance intervals are not commonly implemented in statistical software packages. This paper aims to provide a comparative study of the computational procedures for tolerance intervals in some commonly used statistical software packages including JMP, Minitab, NCSS, Python, R, and SAS. On the other hand, we also investigate the effect of misspecifying the underlying probability model on the performance of tolerance intervals. We study the performance of tolerance intervals when the assumed distribution is the same as the true underlying distribution and when the assumed distribution is different from the true distribution via a Monte Carlo simulation study. We also propose a robust model selection approach to obtain tolerance intervals that are relatively insensitive to the model misspecification. We show that the proposed robust model selection approach performs well when the underlying distribution is unknown but candidate distributions are available.

Suggested Citation

  • Kyung Serk Cho & Hon Keung Tony Ng, 2021. "Tolerance intervals in statistical software and robustness under model misspecification," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-49, December.
  • Handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00123-2
    DOI: 10.1186/s40488-021-00123-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-021-00123-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-021-00123-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Derek S. Young & Thomas Mathew, 2014. "Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 415-432, September.
    2. Fernández, Arturo J., 2010. "Two-sided tolerance intervals in the exponential case: Corrigenda and generalizations," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 151-162, January.
    3. Young, Derek S., 2010. "tolerance: An R Package for Estimating Tolerance Intervals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kedai Cheng & Derek S. Young, 2023. "An Approach for Specifying Trimming and Winsorization Cutoffs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 299-323, June.
    2. Jesse Frey & Yimin Zhang, 2017. "What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 305-309, October.
    3. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    4. Maryam Al-Kandari & Kingsley Adjenughwure & Kyriakos Papadopoulos, 2020. "A Fuzzy-Statistical Tolerance Interval from Residuals of Crisp Linear Regression Models," Mathematics, MDPI, vol. 8(9), pages 1-10, August.
    5. Ilaria Lucrezia Amerise, 2023. "A direct method for constructing distribution-free tolerance regions," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 3941-3954, October.
    6. Thurnher, Christopher & Klopf, Mario & Hasenauer, Hubert, 2017. "MOSES – A tree growth simulator for modelling stand response in Central Europe," Ecological Modelling, Elsevier, vol. 352(C), pages 58-76.
    7. Shin‐Fu Tsai, 2020. "Approximate two‐sided tolerance intervals for normal mixture distributions," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 367-382, September.
    8. Mathew, Thomas & Young, Derek S., 2013. "Fiducial-based tolerance intervals for some discrete distributions," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 38-49.
    9. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    10. Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
    11. Young, D.S., 2013. "Approximate tolerance limits for Zipf–Mandelbrot distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1702-1711.
    12. Fernández, Arturo J., 2012. "Minimizing the area of a Pareto confidence region," European Journal of Operational Research, Elsevier, vol. 221(1), pages 205-212.
    13. Chen, Cathy W.S. & Lin, Tsai-Yu, 2017. "Nonparametric tolerance limits for pair trading," Finance Research Letters, Elsevier, vol. 21(C), pages 1-9.
    14. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    15. Tom Burr & Elisa Bonner & Kamil Krzysztoszek & Claude Norman, 2019. "Setting Alarm Thresholds in Measurements with Systematic and Random Errors," Stats, MDPI, vol. 2(2), pages 1-13, May.
    16. Penelope S. Pooler & Philip E. Goodrum & Deana Crumbling & Leah D. Stuchal & Stephen M. Roberts, 2018. "Incremental Sampling Methodology: Applications for Background Screening Assessments," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 194-209, January.
    17. Ngan Hoang-Nguyen-Thuy & K. Krishnamoorthy, 2021. "A method for computing tolerance intervals for a location-scale family of distributions," Computational Statistics, Springer, vol. 36(2), pages 1065-1092, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00123-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.