IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i6p916-933.html
   My bibliography  Save this article

Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua

Author

Listed:
  • Francisco Picado
  • Alfredo Mendoza
  • Steven Cuadra
  • Gerhard Barmen
  • Kristina Jakobsson
  • Göran Bengtsson

Abstract

The objective of the present study was to integrate the relative risk from mercury exposure to stream biota, groundwater, and humans in the Río Artiguas (Sucio) river basin, Nicaragua, where local gold mining occurs. A hazard quotient was used as a common exchange rate in probabilistic estimations of exposure and effects by means of Monte Carlo simulations. The endpoint for stream organisms was the lethal no‐observed‐effect concentration (NOECs), for groundwater the WHO guideline and the inhibitory Hg concentrations in bacteria (IC), and for humans the tolerable daily intake (TDI) and the benchmark dose level with an uncertainty factor of 10 (BMDLs0.1). Macroinvertebrates and fish in the contaminated river are faced with a higher risk to suffer from exposure to Hg than humans eating contaminated fish and bacteria living in the groundwater. The river sediment is the most hazardous source for the macroinvertebrates, and macroinvertebrates make up the highest risk for fish. The distribution of body concentrations of Hg in fish in the mining areas of the basin may exceed the distribution of endpoint values with close to 100% probability. Similarly, the Hg concentration in cord blood of humans feeding on fish from the river was predicted to exceed the BMDLs0.1 with about 10% probability. Most of the risk to the groundwater quality is confined to the vicinity of the gold refining plants and along the river, with a probability of about 20% to exceed the guideline value.

Suggested Citation

  • Francisco Picado & Alfredo Mendoza & Steven Cuadra & Gerhard Barmen & Kristina Jakobsson & Göran Bengtsson, 2010. "Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 916-933, June.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:6:p:916-933
    DOI: 10.1111/j.1539-6924.2010.01387.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01387.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01387.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esben Budtz‐Jørgensen & Niels Keiding & Philippe Grandjean, 2004. "Effects of Exposure Imprecision on Estimation of the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1689-1696, December.
    2. Ravi N. Sanga & Scott M. Bartell & Rafael A. Ponce & Ana A. P. Boischio & Claude R. Joiris & Crispin H. Pierce & Elaine M. Faustman, 2001. "Effects of Uncertainties on Exposure Estimates to Methylmercury: A Monte Carlo Analysis of Exposure Biomarkers versus Dietary Recall Estimation," Risk Analysis, John Wiley & Sons, vol. 21(5), pages 859-859, October.
    3. Daniela Ducci, 1999. "GIS Techniques for Mapping Groundwater Contamination Risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 279-294, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Singaraja & S. Chidambaram & P. Anandhan & M. Prasanna & C. Thivya & R. Thilagavathi, 2015. "A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(3), pages 443-475, June.
    2. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    3. Maria Triassi & Pellegrino Cerino & Paolo Montuori & Antonio Pizzolante & Ugo Trama & Federico Nicodemo & Jacopo Luigi D’Auria & Sabato De Vita & Elvira De Rosa & Antonio Limone, 2023. "Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    4. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    5. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    6. Miwako Dakeishi & Katsuyuki Murata & Akiko Tamura & Toyoto Iwata, 2006. "Relation Between Benchmark Dose and No‐Observed‐Adverse‐Effect Level in Clinical Research: Effects of Daily Alcohol Intake on Blood Pressure in Japanese Salesmen," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 115-123, February.
    7. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.
    8. Robert Nelson & Joonghyeok Heo, 2020. "Monitoring Environmental Parameters with Oil and Gas Developments in the Permian Basin, USA," IJERPH, MDPI, vol. 17(11), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:6:p:916-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.