IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v29y2009i1p62-75.html
   My bibliography  Save this article

Resource Allocation in Integrated Preoperational and Operational Management of Natural Hazards

Author

Listed:
  • Riccardo Minciardi
  • Roberto Sacile
  • Eva Trasforini

Abstract

The management of natural hazards occurring over a territory entails two main phases: a preoperational—or pre‐event—phase, whose objective is to relocate resources closer to sites characterized by the highest hazard, and an operational—during the event—phase, whose objective is to manage in real time the available resources by allocating them to sites where their intervention is needed. Obviously, the two phases are closely related, and demand a unified and integrated treatment. This work presents a unifying framework that integrates various decisional problems arising in the management of different kinds of natural hazards. The proposed approach, which is based on a mathematical programming formulation, can support the decisionmakers in the optimal resource allocation before (preoperational phase) and during (operational phase) an emergency due to natural hazard events. Different alternatives of modeling the resources and the territory are proposed and discussed according to their appropriateness in the preoperational and operational phases. The proposed approach can be applied to the management of any natural hazard and, from an integration perspective, may be particularly useful for risk management in civil protection operations. An application related to the management of wildfire hazard is presented.

Suggested Citation

  • Riccardo Minciardi & Roberto Sacile & Eva Trasforini, 2009. "Resource Allocation in Integrated Preoperational and Operational Management of Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 62-75, January.
  • Handle: RePEc:wly:riskan:v:29:y:2009:i:1:p:62-75
    DOI: 10.1111/j.1539-6924.2008.01154.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01154.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01154.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pu Jiang & Yacov Y. Haimes, 2004. "Risk Management for Leontief‐Based Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1215-1229, October.
    2. Vicki M. Bier & Yacov Y. Haimes & James H. Lambert & Nicholas C. Matalas & Rae Zimmerman, 1999. "A Survey of Approaches for Assessing and Managing the Risk of Extremes," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 83-94, February.
    3. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    4. Yacov Y. Haimes, 1991. "Total Risk Management," Risk Analysis, John Wiley & Sons, vol. 11(2), pages 169-171, June.
    5. Jun Long & Baruch Fischhoff, 2000. "Setting Risk Priorities: A Formal Model," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 339-352, June.
    6. David Tàbara & David Saurí & Rufí Cerdan, 2003. "Forest Fire Risk Management and Public Participation in Changing Socioenvironmental Conditions: A Case Study in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 23(2), pages 249-260, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Junrui Xu & James H. Lambert, 2015. "Risk‐Cost‐Benefit Analysis for Transportation Corridors with Interval Uncertainties of Heterogeneous Data," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 624-641, April.
    3. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    4. Abbie A. Rogers & Fiona L. Dempster & Jacob I. Hawkins & Robert J. Johnston & Peter C. Boxall & John Rolfe & Marit E. Kragt & Michael P. Burton & David J. Pannell, 2019. "Valuing non-market economic impacts from natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1131-1161, November.
    5. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingxian Chen & Liang Liang & Dong-Qing Yao, 2017. "Pre-positioning of relief inventories for non-profit organizations: a newsvendor approach," Annals of Operations Research, Springer, vol. 259(1), pages 35-63, December.
    2. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    3. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    4. Rameshwar Dubey & Nezih Altay & Constantin Blome, 2019. "Swift trust and commitment: The missing links for humanitarian supply chain coordination?," Annals of Operations Research, Springer, vol. 283(1), pages 159-177, December.
    5. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    6. Firas Rifai, 2018. "Transfer of Knowhow and Experiences from Commercial Logistics into Humanitarian Logistics to Improve Rescue Missions in Disaster Areas," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(3), pages 1-63, August.
    7. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    8. Nagarajan, Magesh & Shaw, Duncan & Albores, Pavel, 2012. "Disseminating a warning message to evacuate: A simulation study of the behaviour of neighbours," European Journal of Operational Research, Elsevier, vol. 220(3), pages 810-819.
    9. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    10. Alberto Cerezo-Narváez & Andrés Pastor-Fernández & Manuel Otero-Mateo & Pablo Ballesteros-Pérez, 2022. "The Influence of Knowledge on Managing Risk for the Success in Complex Construction Projects: The IPMA Approach," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    11. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2013. "Using the Viable System Model (VSM) to structure information processing complexity in disaster response," European Journal of Operational Research, Elsevier, vol. 224(1), pages 209-218.
    12. Dennis Fok & André Stel & Andrew Burke & Roy Thurik, 2019. "How entry crowds and grows markets: the gradual disaster management view of market dynamics in the retail industry," Annals of Operations Research, Springer, vol. 283(1), pages 1111-1138, December.
    13. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    14. Halicki Marcin & Kwater Tadeusz, 2021. "Simulation experiments of supply chain in a period of small and big disasters," Journal of Economics and Management, Sciendo, vol. 43(1), pages 339-356, May.
    15. Berger, Niklas & Schulze-Schwering, Stefan & Long, Elisa & Spinler, Stefan, 2023. "Risk management of supply chain disruptions: An epidemic modeling approach," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1036-1051.
    16. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    17. Holguín-Veras, José & Taniguchi, Eiichi & Jaller, Miguel & Aros-Vera, Felipe & Ferreira, Frederico & Thompson, Russell G., 2014. "The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 86-104.
    18. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    19. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    20. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:29:y:2009:i:1:p:62-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.