IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i3p537-546.html
   My bibliography  Save this article

Ramifications of Risk Measures in Implementing Quantitative Performance Assessment for the Proposed Radioactive Waste Repository at Yucca Mountain, Nevada, USA

Author

Listed:
  • Sitakanta Mohanty
  • Richard B. Codell

Abstract

As part of its preparation to review a potential license application from the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC) is examining the performance of the proposed Yucca Mountain nuclear waste repository. In this regard, we evaluated postclosure repository performance using Monte Carlo analyses with an NRC‐developed system model that has 950 input parameters, of which 330 are sampled to represent system uncertainties. The quantitative compliance criterion for dose was established by NRC to protect inhabitants who might be exposed to any releases from the repository. The NRC criterion limits the peak‐of‐the‐mean dose, which in our analysis is estimated by averaging the potential exposure at any instant in time for all Monte Carlo realizations, and then determining the maximum value of the mean curve within 10,000 years, the compliance period. This procedure contrasts in important ways with a more common measure of risk based on the mean of the ensemble of peaks from each Monte Carlo realization. The NRC chose the former (peak‐of‐the‐mean) because it more correctly represents the risk to an exposed individual. Procedures for calculating risk in the expected case of slow repository degradation differ from those for low‐probability cases of disruption by external forces such as volcanism. We also explored the possibility of risk dilution (i.e., lower calculated risk) that could result from arbitrarily defining wide probability distributions for certain parameters. Finally, our sensitivity analyses to identify influential parameters used two approaches: (1) the ensemble of doses from each Monte Carlo realization at the time of the peak risk (i.e., peak‐of‐the‐mean) and (2) the ensemble of peak doses calculated from each realization within 10,000 years. The latter measure appears to have more discriminatory power than the former for many parameters (based on the greater magnitude of the sensitivity coefficient), but can yield different rankings, especially for parameters that influence the timing of releases.

Suggested Citation

  • Sitakanta Mohanty & Richard B. Codell, 2004. "Ramifications of Risk Measures in Implementing Quantitative Performance Assessment for the Proposed Radioactive Waste Repository at Yucca Mountain, Nevada, USA," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 537-546, June.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:3:p:537-546
    DOI: 10.1111/j.0272-4332.2004.00457.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00457.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00457.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    2. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    3. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    4. Emanuele Borgonovo, 2008. "Epistemic Uncertainty in the Ranking and Categorization of Probabilistic Safety Assessment Model Elements: Issues and Findings," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 983-1001, August.
    5. Emanuele Borgonovo, 2008. "Sensitivity Analysis of Model Output with Input Constraints: A Generalized Rationale for Local Methods," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 667-680, June.
    6. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    7. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    8. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    9. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    10. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    11. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    12. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    13. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    14. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    15. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    16. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    17. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    18. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    19. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    20. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:3:p:537-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.