IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v23y2003i6p1173-1184.html
   My bibliography  Save this article

Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure‐Based and Property‐Based Methods

Author

Listed:
  • Subhash C. Basak
  • Denise Mills
  • Douglas M. Hawkins
  • Hisham A. El‐Masri

Abstract

In recent years, there has been increased interest in the development and use of quantitative structure‐activity/property relationship (QSAR/QSPR) models. For the most part, this is due to the fact that experimental data is sparse and obtaining such data is costly, while theoretical structural descriptors can be obtained quickly and inexpensively. In this study, three linear regression methods, viz. principal component regression (PCR), partial least squares (PLS), and ridge regression (RR), were used to develop QSPR models for the estimation of human blood:air partition coefficient (logPblood:air) for a group of 31 diverse low‐molecular weight volatile chemicals from their computed molecular descriptors. In general, RR was found to be superior to PCR or PLS. Comparisons were made between models developed using parameters based solely on molecular structure and linear regression (LR) models developed using experimental properties, including saline:air partition coefficient (logPsaline:air) and olive oil:air partition coefficient (logPolive oil:air), as independent variables, indicating that the structure‐property correlations are comparable to the property‐property correlations. The best models, however, were those that used rat logPblood:air as the independent variable. Haloalkane subgroups were modeled separately for comparative purposes and, although models based on the congeneric compounds were superior, the models developed on the complete set of diverse compounds were of acceptable quality. The structural descriptors were placed into one of three classes based on level of complexity: topostructural (TS), topochemical (TC), or three‐dimensional/geometrical (3D). Modeling was performed using the structural descriptor classes both in a hierarchical fashion and separately. The results indicate that highest quality structure‐based models, in terms of descriptor classes, were those derived using TC descriptors.

Suggested Citation

  • Subhash C. Basak & Denise Mills & Douglas M. Hawkins & Hisham A. El‐Masri, 2003. "Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure‐Based and Property‐Based Methods," Risk Analysis, John Wiley & Sons, vol. 23(6), pages 1173-1184, December.
  • Handle: RePEc:wly:riskan:v:23:y:2003:i:6:p:1173-1184
    DOI: 10.1111/j.0272-4332.2003.00390.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2003.00390.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2003.00390.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hawkins, Douglas M. & Yin, Xiangrong, 2002. "A faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 253-262, August.
    2. Neil A. Butler & Michael C. Denham, 2000. "The peculiar shrinkage properties of partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 585-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    2. Turlach, Berwin A., 2006. "An even faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 642-658, February.
    3. Jie Huang & David Harrington, 2005. "Iterative Partial Least Squares with Right-Censored Data Analysis: A Comparison to Other Dimension Reduction Techniques," Biometrics, The International Biometric Society, vol. 61(1), pages 17-24, March.
    4. Anders Björkström, 2010. "Krylov Sequences as a Tool for Analysing Iterated Regression Algorithms," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 166-175, March.
    5. Lübke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "A computer intensive method for choosing the ridge parameter," Technical Reports 2004,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Čížek, Pavel, 2004. "(Non) Linear Regression Modeling," Papers 2004,11, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Hawkins, Douglas M. & Yin, Xiangrong, 2002. "A faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 253-262, August.
    8. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    9. Druilhet, Pierre & Mom, Alain, 2006. "PLS regression: A directional signal-to-noise ratio approach," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1313-1329, July.
    10. Druilhet, Pierre & Mom, Alain, 2008. "Shrinkage structure in biased regression," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 232-244, February.
    11. Nicole Krämer, 2007. "An overview on the shrinkage properties of partial least squares regression," Computational Statistics, Springer, vol. 22(2), pages 249-273, July.
    12. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:23:y:2003:i:6:p:1173-1184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.