IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v40y2002i2p253-262.html
   My bibliography  Save this article

A faster algorithm for ridge regression of reduced rank data

Author

Listed:
  • Hawkins, Douglas M.
  • Yin, Xiangrong

Abstract

No abstract is available for this item.

Suggested Citation

  • Hawkins, Douglas M. & Yin, Xiangrong, 2002. "A faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 253-262, August.
  • Handle: RePEc:eee:csdana:v:40:y:2002:i:2:p:253-262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00034-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neil A. Butler & Michael C. Denham, 2000. "The peculiar shrinkage properties of partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 585-593.
    2. Leo Breiman & Jerome H. Friedman, 1997. "Predicting Multivariate Responses in Multiple Linear Regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 3-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subhash C. Basak & Denise Mills & Douglas M. Hawkins & Hisham A. El‐Masri, 2003. "Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure‐Based and Property‐Based Methods," Risk Analysis, John Wiley & Sons, vol. 23(6), pages 1173-1184, December.
    2. Lübke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "A computer intensive method for choosing the ridge parameter," Technical Reports 2004,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Turlach, Berwin A., 2006. "An even faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 642-658, February.
    4. Čížek, Pavel, 2004. "(Non) Linear Regression Modeling," Papers 2004,11, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    2. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    3. Jewson Stephen & Penzer Jeremy, 2006. "Estimating Trends in Weather Series: Consequences for Pricing Derivatives," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-17, September.
    4. Luebke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "Latent Factor Prediction Pursuit for Rank Deficient Regressors," Technical Reports 2004,75, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Srivastava, M. S. & Kubokawa, T., 2005. "Minimax multivariate empirical Bayes estimators under multicollinearity," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 394-416, April.
    6. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    7. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.
    9. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    10. Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Adel Javanmard & Jingwei Ji & Renyuan Xu, 2024. "Multi-Task Dynamic Pricing in Credit Market with Contextual Information," Papers 2410.14839, arXiv.org, revised Oct 2024.
    12. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    13. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    14. Tatsuya Kubokawa & M. S. Srivastava, 2002. "Minimax Multivariate Empirical Bayes Estimators under Multicollinearity," CIRJE F-Series CIRJE-F-187, CIRJE, Faculty of Economics, University of Tokyo.
    15. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    16. Torrubias, J.A.G. & Romera, Rosario, 1997. "On robust partial least square (pls) methods," DES - Working Papers. Statistics and Econometrics. WS 6215, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Joyce de Souza Zanirato Maia & Ana Paula Arantes Bueno & João Ricardo Sato, 2021. "Assessing the educational performance of different Brazilian school cycles using data science methods," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    18. Jae Sang Moon & Lance Manuel & Matthew J. Churchfield & Sang Lee & Paul S. Veers, 2017. "Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads," Energies, MDPI, vol. 11(1), pages 1-34, December.
    19. Molinaro, Annette M. & Dudoit, Sandrine & van der Laan, M.J.Mark J., 2004. "Tree-based multivariate regression and density estimation with right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 154-177, July.
    20. Jie Huang & David Harrington, 2005. "Iterative Partial Least Squares with Right-Censored Data Analysis: A Comparison to Other Dimension Reduction Techniques," Biometrics, The International Biometric Society, vol. 61(1), pages 17-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:40:y:2002:i:2:p:253-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.