IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v23y2003i6p1147-1163.html
   My bibliography  Save this article

Dose‐Response and Risk Assessment of Airborne Hexavalent Chromium and Lung Cancer Mortality

Author

Listed:
  • Casey Crump
  • Kenny Crump
  • Eric Hack
  • Rose Luippold
  • Kenneth Mundt
  • Elizabeth Liebig
  • Julie Panko
  • Dennis Paustenbach
  • Deborah Proctor

Abstract

This study evaluates the dose‐response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose‐response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 μg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five‐year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg‐day)−1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure‐related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg‐yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 μg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).

Suggested Citation

  • Casey Crump & Kenny Crump & Eric Hack & Rose Luippold & Kenneth Mundt & Elizabeth Liebig & Julie Panko & Dennis Paustenbach & Deborah Proctor, 2003. "Dose‐Response and Risk Assessment of Airborne Hexavalent Chromium and Lung Cancer Mortality," Risk Analysis, John Wiley & Sons, vol. 23(6), pages 1147-1163, December.
  • Handle: RePEc:wly:riskan:v:23:y:2003:i:6:p:1147-1163
    DOI: 10.1111/j.0272-4332.2003.00388.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2003.00388.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2003.00388.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. J. Venzon & S. H. Moolgavkar, 1988. "A Method for Computing Profile‐Likelihood‐Based Confidence Intervals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 87-94, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert M. Park & Leslie T. Stayner, 2006. "A Search for Thresholds and Other Nonlinearities in the Relationship Between Hexavalent Chromium and Lung Cancer," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 79-88, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Weidmann & David J. Deming, 2020. "Team Players: How Social Skills Improve Group Performance," NBER Working Papers 27071, National Bureau of Economic Research, Inc.
    2. Katja Rateitschak & Felix Winter & Falko Lange & Robert Jaster & Olaf Wolkenhauer, 2012. "Parameter Identifiability and Sensitivity Analysis Predict Targets for Enhancement of STAT1 Activity in Pancreatic Cancer and Stellate Cells," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-14, December.
    3. Ben Weidmann & David J. Deming, 2021. "Team Players: How Social Skills Improve Team Performance," Econometrica, Econometric Society, vol. 89(6), pages 2637-2657, November.
    4. Bianca Schmid & Melanie Rinas & Alessia Ruggieri & Eliana Gisela Acosta & Marie Bartenschlager & Antje Reuter & Wolfgang Fischl & Nathalie Harder & Jan-Philip Bergeest & Michael Flossdorf & Karl Rohr , 2015. "Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant," PLOS Pathogens, Public Library of Science, vol. 11(12), pages 1-36, December.
    5. Dankmar Böhning & Herwig Friedl, 2021. "Population size estimation based upon zero-truncated, one-inflated and sparse count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1197-1217, October.
    6. Joshua Russell-Buckland & Christopher P Barnes & Ilias Tachtsidis, 2019. "A Bayesian framework for the analysis of systems biology models of the brain," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.
    7. V. G. Vassiliadis & I. I. Spyroglou & A. G. Rigas & J. R. Rosenberg & K. A. Lindsay, 2019. "Dealing with the Phenomenon of Quasi-complete Separation and a Goodness of Fit Test in Logistic Regression Models in the Case of Long Data Sets," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 567-596, December.
    8. Laura Cella & Giuseppe Palma & Joseph O Deasy & Jung Hun Oh & Raffaele Liuzzi & Vittoria D’Avino & Manuel Conson & Novella Pugliese & Marco Picardi & Marco Salvatore & Roberto Pacelli, 2014. "Complication Probability Models for Radiation-Induced Heart Valvular Dysfunction: Do Heart-Lung Interactions Play a Role?," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    9. Lam, Nicholas N. & Docherty, Paul D. & Murray, Rua, 2022. "Practical identifiability of parametrised models: A review of benefits and limitations of various approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 202-216.
    10. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    11. Xiaowei Ren & Jielai Xia, 2019. "An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:23:y:2003:i:6:p:1147-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.