IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v9y2018i1p85-139.html
   My bibliography  Save this article

Learning in network games

Author

Listed:
  • Jaromír Kovářík
  • Friederike Mengel
  • José Gabriel Romero

Abstract

We report the findings of experiments designed to study how people learn in network games. Network games offer new opportunities to identify learning rules, since on networks (compared to, e.g., random matching) more rules differ in terms of their information requirements. Our experimental design enables us to observe both which actions participants choose and which information they consult before making their choices. We use these data to estimate learning types using finite mixture models. Monitoring information requests turns out to be crucial, as estimates based on choices alone show substantial biases. We also find that learning depends on network position. Participants in more complex environments (with more network neighbors) tend to resort to simpler rules compared to those with only one network neighbor.

Suggested Citation

  • Jaromír Kovářík & Friederike Mengel & José Gabriel Romero, 2018. "Learning in network games," Quantitative Economics, Econometric Society, vol. 9(1), pages 85-139, March.
  • Handle: RePEc:wly:quante:v:9:y:2018:i:1:p:85-139
    DOI: 10.3982/QE688
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE688
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    • Kovarik, Jaromir & Mengel, Friederike & Romero, José Gabriel, 2012. "Learning in Network Games," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    4. Goyal, Sanjeev, 2003. "Learning in Networks: a survey," Economics Discussion Papers 9983, University of Essex, Department of Economics.
    5. Naik, Prasad A. & Shi, Peide & Tsai, Chih-Ling, 2007. "Extending the Akaike Information Criterion to Mixture Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 244-254, March.
    6. Fosco, Constanza & Mengel, Friederike, 2011. "Cooperation through imitation and exclusion in networks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 641-658, May.
    7. Jackson, Matthew O. & Watts, Alison, 2002. "On the formation of interaction networks in social coordination games," Games and Economic Behavior, Elsevier, vol. 41(2), pages 265-291, November.
    8. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    10. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    11. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    12. Boylan Richard T. & El-Gamal Mahmoud A., 1993. "Fictitious Play: A Statistical Study of Multiple Economic Experiments," Games and Economic Behavior, Elsevier, vol. 5(2), pages 205-222, April.
    13. Teck H. Ho & Xin Wang & Colin F. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    14. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    15. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    16. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 612-643, August.
    17. Goyal, Sanjeev & Vega-Redondo, Fernando, 2005. "Network formation and social coordination," Games and Economic Behavior, Elsevier, vol. 50(2), pages 178-207, February.
    18. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-1289, November.
    19. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    20. Vega-Redondo,Fernando, 2003. "Economics and the Theory of Games," Cambridge Books, Cambridge University Press, number 9780521775908.
    21. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    22. Ilan Eshel & Larry Samuelson & Avner Shaked, "undated". "Altruists Egoists and Hooligans in a Local Interaction Model," ELSE working papers 005, ESRC Centre on Economics Learning and Social Evolution.
    23. Eshel, Ilan & Samuelson, Larry & Shaked, Avner, 1998. "Altruists, Egoists, and Hooligans in a Local Interaction Model," American Economic Review, American Economic Association, vol. 88(1), pages 157-179, March.
    24. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    25. Jeff Gill & Gary King, 2004. "What to Do When Your Hessian is Not Invertible," Sociological Methods & Research, , vol. 33(1), pages 54-87, August.
    26. Schlag, Karl H., 1998. "Why Imitate, and If So, How?, : A Boundedly Rational Approach to Multi-armed Bandits," Journal of Economic Theory, Elsevier, vol. 78(1), pages 130-156, January.
    27. Shachat, Jason & Walker, Mark, 2004. "Unobserved heterogeneity and equilibrium: an experimental study of Bayesian and adaptive learning in normal form games," Journal of Economic Theory, Elsevier, vol. 114(2), pages 280-309, February.
    28. Johnson, Eric J. & Camerer, Colin & Sen, Sankar & Rymon, Talia, 2002. "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of Economic Theory, Elsevier, vol. 104(1), pages 16-47, May.
    29. Nathaniel T Wilcox, 2006. "Theories of Learning in Games and Heterogeneity Bias," Econometrica, Econometric Society, vol. 74(5), pages 1271-1292, September.
    30. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2008. "Contagion and efficiency," Journal of Economic Theory, Elsevier, vol. 143(1), pages 251-274, November.
    31. Antonio Cabrales & Walter Garcia Fontes, 2000. "Estimating learning models from experimental data," Economics Working Papers 501, Department of Economics and Business, Universitat Pompeu Fabra.
    32. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    33. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    34. TeckH. Ho & Xin Wang & ColinF. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    35. Kirchkamp, Oliver & Nagel, Rosemarie, 2007. "Naive learning and cooperation in network experiments," Games and Economic Behavior, Elsevier, vol. 58(2), pages 269-292, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Pola, Bernardo & Iriberri, Nagore & Kovářík, Jaromír, 2020. "Non-equilibrium play in centipede games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 391-433.
    2. Engel, Christoph, 2020. "Estimating heterogeneous reactions to experimental treatments," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 124-147.
    3. Antinyan, Armenak & Horváth, Gergely & Jia, Mofei, 2020. "Positional concerns and social network structure: An experiment," European Economic Review, Elsevier, vol. 129(C).
    4. Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.
    5. García-Pola, Bernardo, 2020. "Do people minimize regret in strategic situations? A level-k comparison," Games and Economic Behavior, Elsevier, vol. 124(C), pages 82-104.
    6. Tenev, Anastas P., 2024. "“Friends Are Thieves of Time”: Heuristic attention sharing in stable friendship networks," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 785-809.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    2. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    3. Friederike Mengel, 2009. "Conformism and cooperation in a local interaction model," Journal of Evolutionary Economics, Springer, vol. 19(3), pages 397-415, June.
    4. Simon Weidenholzer, 2010. "Coordination Games and Local Interactions: A Survey of the Game Theoretic Literature," Games, MDPI, vol. 1(4), pages 1-35, November.
    5. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    6. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    7. Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.
    8. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    9. Fosco, Constanza & Mengel, Friederike, 2011. "Cooperation through imitation and exclusion in networks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 641-658, May.
    10. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    11. Ge Jiang & Simon Weidenholzer, 2017. "Local interactions under switching costs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 571-588, October.
    12. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    13. Masiliūnas, Aidas, 2023. "Learning in rent-seeking contests with payoff risk and foregone payoff information," Games and Economic Behavior, Elsevier, vol. 140(C), pages 50-72.
    14. Zhiwei Cui, 2019. "Matching, Imitation, and Coordination in Networks," Dynamic Games and Applications, Springer, vol. 9(1), pages 47-67, March.
    15. Tsakas, Nikolas, 2012. "Naive learning in social networks: Imitating the most successful neighbor," MPRA Paper 37796, University Library of Munich, Germany.
    16. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    17. Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
    18. Goyal, Sanjeev, 2003. "Learning in Networks: a survey," Economics Discussion Papers 9983, University of Essex, Department of Economics.
    19. Teck H. Ho & Xin Wang & Colin F. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    20. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:9:y:2018:i:1:p:85-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.