IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i2p324-336.html
   My bibliography  Save this article

Hydrological impacts of near‐surface soil warming on the Tibetan Plateau

Author

Listed:
  • Li Liu
  • Wenjiang Zhang
  • Qifeng Lu
  • Huiru Jiang
  • Yi Tang
  • Hongmin Xiao
  • Genxu Wang

Abstract

Climate warming can cause intense changes in regional soil freeze/thaw dynamics and thus exerts strong effects on hydrological processes. Because permafrost conditions vary widely across the Tibetan Plateau (TP), a better understanding the potential influences of permafrost types is helpful to project future hydrological changes. Using multilayer soil temperatures from 45 meteorological stations, this study investigated regional near‐surface soil warming on the TP (1981–2015) and related hydrological implications in two typical alpine basins. In cold and warm seasons, near‐surface soil temperature gradient (0–5 cm) showed significant increasing trends with average rates of 0.31 ± 0.13 and 0.19 ± 0.08°C per decade (p 60%) basin, but had much weaker hydrological effects in the low‐permafrost (

Suggested Citation

  • Li Liu & Wenjiang Zhang & Qifeng Lu & Huiru Jiang & Yi Tang & Hongmin Xiao & Genxu Wang, 2020. "Hydrological impacts of near‐surface soil warming on the Tibetan Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 324-336, April.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:2:p:324-336
    DOI: 10.1002/ppp.2049
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2049
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ming‐Ko Woo & Douglas L. Kane & Sean K. Carey & Daqing Yang, 2008. "Progress in permafrost hydrology in the new millennium," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 237-254, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    2. Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
    3. Tianxu Mao & Genxu Wang & Tao Zhang, 2016. "Impacts of Climatic Change on Hydrological Regime in the Three-River Headwaters Region, China, 1960-2009," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 115-131, January.
    4. Miao Yu & Nadezhda Pavlova & Changlei Dai & Xianfeng Guo & Xiaohong Zhang & Shuai Gao & Yiru Wei, 2023. "Simulation and Analysis of the Dynamic Characteristics of Groundwater in Taliks in the Eruu Area, Central Yakutia," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    5. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:2:p:324-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.