IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v19y2008i2p237-254.html
   My bibliography  Save this article

Progress in permafrost hydrology in the new millennium

Author

Listed:
  • Ming‐Ko Woo
  • Douglas L. Kane
  • Sean K. Carey
  • Daqing Yang

Abstract

Increased attention directed at the permafrost region has been prompted by resource development and climate change. This review surveys advances in permafrost hydrology since 2000. Data shortage and data quality remain serious concerns. Yet, there has been much progress in understanding fundamental hydrologic processes operating in a wide range of environments, from steep mountainous catchments, to the Precambrian Shield with moderate relief, to the low‐gradient terrain of plains, plateaus and wetlands. Much of the recent research has focused on surface water, although springs and groundwater contribution to streamflow have also been studied. A compendium of water‐balance research from 39 high‐latitude catchments reveals the strengths and limitations of the available results, most of which are restricted to only a few years of study at the small watershed scale. The response of streamflow to climate receives continued if not increasing attention, from the occurrence of extreme hydrologic events to the changing regimes of river flow at a regional scale. The effect of climate change and the role of permafrost on the changing discharge of large boreal rivers are major topics for further investigation. Extended field and modelling research on physical processes will improve knowledge of permafrost hydrology and enhance its relevance to societal needs. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Ming‐Ko Woo & Douglas L. Kane & Sean K. Carey & Daqing Yang, 2008. "Progress in permafrost hydrology in the new millennium," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 237-254, April.
  • Handle: RePEc:wly:perpro:v:19:y:2008:i:2:p:237-254
    DOI: 10.1002/ppp.613
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.613
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao Yu & Nadezhda Pavlova & Changlei Dai & Xianfeng Guo & Xiaohong Zhang & Shuai Gao & Yiru Wei, 2023. "Simulation and Analysis of the Dynamic Characteristics of Groundwater in Taliks in the Eruu Area, Central Yakutia," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
    3. Tianxu Mao & Genxu Wang & Tao Zhang, 2016. "Impacts of Climatic Change on Hydrological Regime in the Three-River Headwaters Region, China, 1960-2009," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 115-131, January.
    4. Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
    5. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    6. Li Liu & Wenjiang Zhang & Qifeng Lu & Huiru Jiang & Yi Tang & Hongmin Xiao & Genxu Wang, 2020. "Hydrological impacts of near‐surface soil warming on the Tibetan Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 324-336, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:19:y:2008:i:2:p:237-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.