IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v12y2001i1p69-77.html
   My bibliography  Save this article

Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data

Author

Listed:
  • Stephan Gruber
  • Martin Hoelzle

Abstract

Field mapping of mountain permafrost is laborious and is generally based on interpolation between point information. A spatial model that is based on elevation and a parameterization of solar radiation during summer is presented here. It allows estimation of permafrost distribution and can be calibrated locally, based on bottom temperature of snow (BTS) measurements or other indicators such as mapped features of permafrost creep. Local calibration makes this approach flexible and allows application in various mountain ranges. Model output consists of a continuous field of simulated BTS values that are subsequently divided into the classes ‘permafrost likely’, ‘permafrost possible’ and ‘no permafrost’ following the rules of thumb established for BTS field measurements in the Alps. Additionally, the simulated BTS values can be interpreted as a crude proxy for ground temperature regime and sensitivity to permafrost degradation. A map of vegetation abundance derived from atmospherically and topographically corrected satellite imagery was incorporated into this model to enhance the accuracy of the prediction. Based on the same corrected satellite image, a map of albedo was derived and used to calculate net short‐wave radiation, in an attempt to increase model accuracy. However, the statistical relationship with BTS did not improve. This is probably due to the correlation of short‐wave solar radiation with snow‐melt patterns or other factors of permafrost distribution which are being influenced differently by the introduction of albedo. Copyright © 2001 John Wiley & Sons, Ltd. RÉSUMÉ La cartographie sur le terrain du pergélisol de montagne est un travail laborieux généralement basé e sur des interpolations entre des points pour lesquelles on possède des informations. Un modèle spatial basé sur l'altitude et le calcul de la radiation solaire est présenté ici. Il permet d'estimer la distribution du pergélisol et peut être calibré localement en utilisant des mesures de température à la base de la neige (BTS) et d'autres indications comme celles résultant de la cartographie des traces de creep du pergélisol. Une calibration locale rend cette approche flexible et permet son application dans différents milieux montagneux. Les données provenant du modèle se présentent comme un champ continu de valeurs BTS simulées qui sont par la suite divisées en classes de “pergélisol probable”, “pergélisol possible” et “pergélisol absent” suivant une règle empirique établie pour les mesures BTS dans les Alpes. En outre, les valeurs BTS simulées peuvent être interprétées comme donnant une approximation du régime de température du sol et de la fragilité à la dégradation du pergélisol. Une carte de l'abondance de la végétation dérivée d'images satellitaires corrigées pour l'atmosphère et la topographie a été incorporée dans ce modèle dans l'espoir d'augmenter la précision de la prédiction. Basée sur la même image satellitaire corrigée, une carte de l'albedo a été obtenue et utilisée pour calculer la radiation nette dans les ondes courtes pour essayer d'augmenter encore la précision du modèle. Toutefois la relation statistique avec les résultats obtenus par BTS n'a pas été augmentée. Cela est probablement dû à la corrélation existante entre la radiation solaire à courte longueur d'onde et le réseaux de fonte des neige, ainsi qu'à d'autres facteurs qui contrôlent la distribution du pergélisol en variant différemment d e l'albedo. Copyright © 2001 John Wiley & Sons, Ltd.

Suggested Citation

  • Stephan Gruber & Martin Hoelzle, 2001. "Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 12(1), pages 69-77, March.
  • Handle: RePEc:wly:perpro:v:12:y:2001:i:1:p:69-77
    DOI: 10.1002/ppp.374
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.374
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:12:y:2001:i:1:p:69-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.