IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v67y2020i7p503-523.html
   My bibliography  Save this article

Decomposition‐based approximation algorithms for the one‐warehouse multi‐retailer problem with concave batch order costs

Author

Listed:
  • Weihong Hu
  • Zhuoting Yu
  • Alejandro Toriello
  • Maged M. Dessouky

Abstract

We study the one‐warehouse multi‐retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two‐echelon problem into single‐facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant‐factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.

Suggested Citation

  • Weihong Hu & Zhuoting Yu & Alejandro Toriello & Maged M. Dessouky, 2020. "Decomposition‐based approximation algorithms for the one‐warehouse multi‐retailer problem with concave batch order costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 503-523, October.
  • Handle: RePEc:wly:navres:v:67:y:2020:i:7:p:503-523
    DOI: 10.1002/nav.21927
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21927
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gayon, J.-P. & Massonnet, G. & Rapine, C. & Stauffer, G., 2016. "Constant approximation algorithms for the one warehouse multiple retailers problem with backlog or lost-sales," European Journal of Operational Research, Elsevier, vol. 250(1), pages 155-163.
    2. Steven A. Lippman, 1969. "Optimal Inventory Policy with Multiple Set-Up Costs," Management Science, INFORMS, vol. 16(1), pages 118-138, September.
    3. Gautier Stauffer, 2012. "Using the economical order quantity formula for inventory control in one‐warehouse multiretailer systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 285-297, April.
    4. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    5. Shoshana Anily & Michal Tzur, 2005. "Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach," Transportation Science, INFORMS, vol. 39(2), pages 233-248, May.
    6. Zhang, Wentao & Uhan, Nelson A. & Dessouky, Maged & Toriello, Alejandro, 2018. "Moulin mechanism design for freight consolidation," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 141-162.
    7. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    8. Esra Koca & Hande Yaman & M. Selim Aktürk, 2014. "Lot Sizing with Piecewise Concave Production Costs," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 767-779, November.
    9. Christine Nguyen & Alejandro Toriello & Maged Dessouky & James E. Moore, 2013. "Evaluation of Transportation Practices in the California Cut Flower Industry," Interfaces, INFORMS, vol. 43(2), pages 182-193, April.
    10. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    11. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    2. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    3. Hu, Weihong & Toriello, Alejandro & Dessouky, Maged, 2018. "Integrated inventory routing and freight consolidation for perishable goods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 548-560.
    4. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.
    5. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    6. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    7. Chung-Lun Li & Vernon Ning Hsu & Wen-Qiang Xiao, 2004. "Dynamic Lot Sizing with Batch Ordering and Truckload Discounts," Operations Research, INFORMS, vol. 52(4), pages 639-654, August.
    8. Gautier Stauffer, 2018. "Approximation algorithms for k-echelon extensions of the one warehouse multi-retailer problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 445-473, December.
    9. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    10. Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.
    11. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    12. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    13. Hwang, Hark-Chin & Kang, Jangha, 2016. "Two-phase algorithm for the lot-sizing problem with backlogging for stepwise transportation cost without speculative motives," Omega, Elsevier, vol. 59(PB), pages 238-250.
    14. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    15. Leon Yang Chu & Vernon Ning Hsu & Zuo‐Jun Max Shen, 2005. "An economic lot‐sizing problem with perishable inventory and economies of scale costs: Approximation solutions and worst case analysis," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 536-548, September.
    16. Hwang, Hark-Chin & Kang, Jangha, 2020. "The two-level lot-sizing problem with outbound shipment," Omega, Elsevier, vol. 90(C).
    17. Engebrethsen, Erna & Dauzère-Pérès, Stéphane, 2019. "Transportation mode selection in inventory models: A literature review," European Journal of Operational Research, Elsevier, vol. 279(1), pages 1-25.
    18. Shoshana Anily & Michal Tzur, 2006. "Algorithms for the multi‐item multi‐vehicles dynamic lot sizing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 157-169, March.
    19. Farhat, Mlouka & Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie, 2019. "Lot sizing problem with batch ordering under periodic buyback contract and lost sales," International Journal of Production Economics, Elsevier, vol. 208(C), pages 500-511.
    20. Ou, Jinwen & Feng, Jiejian, 2019. "Production lot-sizing with dynamic capacity adjustment," European Journal of Operational Research, Elsevier, vol. 272(1), pages 261-269.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:67:y:2020:i:7:p:503-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.