IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v56y2009i1p86-92.html
   My bibliography  Save this article

Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations

Author

Listed:
  • Lauren B. Davis
  • Thom J. Hodgson
  • Russell E. King
  • Wenbin Wei

Abstract

We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009

Suggested Citation

  • Lauren B. Davis & Thom J. Hodgson & Russell E. King & Wenbin Wei, 2009. "Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 86-92, February.
  • Handle: RePEc:wly:navres:v:56:y:2009:i:1:p:86-92
    DOI: 10.1002/nav.20329
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20329
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    2. Srinagesh Gavirneni & Roman Kapuscinski & Sridhar Tayur, 1999. "Value of Information in Capacitated Supply Chains," Management Science, INFORMS, vol. 45(1), pages 16-24, January.
    3. Yao Zhao & David Simchi-Levi, 2002. "The Value of Information Sharing in a Two-Stage Supply Chain with Production Capacity Constraints: The Infinite Horizon Case," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 21-24.
    4. Philip Wolfe & G. B. Dantzig, 1962. "Linear Programming in a Markov Chain," Operations Research, INFORMS, vol. 10(5), pages 702-710, October.
    5. Yasemin Serin & Vidyadhar Kulkarni, 2005. "Markov decision processes under observability constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 311-328, June.
    6. Srinagesh Gavirneni, 2002. "Information Flows in Capacitated Supply Chains with Fixed Ordering Costs," Management Science, INFORMS, vol. 48(5), pages 644-651, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketzenberg, Michael E. & Rosenzweig, Eve D. & Marucheck, Ann E. & Metters, Richard D., 2007. "A framework for the value of information in inventory replenishment," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1230-1250, November.
    2. Kevin H. Shang & Sean X. Zhou & Geert-Jan van Houtum, 2010. "Improving Supply Chain Performance: Real-Time Demand Information and Flexible Deliveries," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 430-448, May.
    3. Sven Axsäter & Johan Marklund, 2008. "Optimal Position-Based Warehouse Ordering in Divergent Two-Echelon Inventory Systems," Operations Research, INFORMS, vol. 56(4), pages 976-991, August.
    4. İsmail Bakal & Nesim Erkip & Refik Güllü, 2011. "Value of supplier’s capacity information in a two-echelon supply chain," Annals of Operations Research, Springer, vol. 191(1), pages 115-135, November.
    5. Chao, Gary H., 2013. "Production and availability policies through the Markov Decision Process and myopic methods for contractual and selective orders," European Journal of Operational Research, Elsevier, vol. 225(3), pages 383-392.
    6. Boray Huang & Seyed M. R. Iravani, 2005. "Production Control Policies in Supply Chains with Selective-Information Sharing," Operations Research, INFORMS, vol. 53(4), pages 662-674, August.
    7. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    8. Kurata, Hisashi & Yue, Xiaohang, 2008. "Trade promotion mode choice and information sharing in fashion retail supply chains," International Journal of Production Economics, Elsevier, vol. 114(2), pages 507-519, August.
    9. Caridi, Maria & Moretto, Antonella & Perego, Alessandro & Tumino, Angela, 2014. "The benefits of supply chain visibility: A value assessment model," International Journal of Production Economics, Elsevier, vol. 151(C), pages 1-19.
    10. Yan, Ruiliang & Pei, Zhi, 2011. "Information asymmetry, pricing strategy and firm's performance in the retailer- multi-channel manufacturer supply chain," Journal of Business Research, Elsevier, vol. 64(4), pages 377-384, April.
    11. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    12. Sari, Kazim, 2010. "Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 174-183, November.
    13. Brian Mittendorf & Jiwoong Shin & Dae-Hee Yoon, 2013. "Manufacturer marketing initiatives and retailer information sharing," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 263-287, June.
    14. Zhiyuan Wang & Zhiqiang (Eric) Zheng & Wei Jiang & Shaojie Tang, 2021. "Blockchain‐Enabled Data Sharing in Supply Chains: Model, Operationalization, and Tutorial," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 1965-1985, July.
    15. Thokozani Patmond Mbhele, 2014. "Antecedents of Quality Information Sharing in the FMCG Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 6(12), pages 986-1003.
    16. ElHafsi, Mohsen & Camus, Herve & Craye, Etienne, 2010. "Managing an integrated production inventory system with information on the production and demand status and multiple non-unitary demand classes," European Journal of Operational Research, Elsevier, vol. 207(2), pages 986-1001, December.
    17. Hsieh, Chung-Chi & Wu, Cheng-Han & Huang, Ya-Jing, 2008. "Ordering and pricing decisions in a two-echelon supply chain with asymmetric demand information," European Journal of Operational Research, Elsevier, vol. 190(2), pages 509-525, October.
    18. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    19. Brian Mittendorf & Jiwoong Shin & Dae-Hee Yoon, 2013. "Manufacturer marketing initiatives and retailer information sharing," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 263-287, June.
    20. repec:dau:papers:123456789/522 is not listed on IDEAS
    21. Miragliotta, Giovanni, 2006. "Layers and mechanisms: A new taxonomy for the Bullwhip Effect," International Journal of Production Economics, Elsevier, vol. 104(2), pages 365-381, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:56:y:2009:i:1:p:86-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.