IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i2p176-188.html
   My bibliography  Save this article

On the effectiveness of top‐down strategy for forecasting autoregressive demands

Author

Listed:
  • Handik Widiarta
  • S. Viswanathan
  • Rajesh Piplani

Abstract

We investigate the relative effectiveness of top‐down versus bottom‐up strategies for forecasting the demand of an item that belongs to a product family. The demand for each item in the family is assumed to follow a first‐order univariate autoregressive process. Under the top‐down strategy, the aggregate demand is forecasted by using the historical data of the family demand. The demand forecast for the items is then derived by proportional allocation of the aggregate forecast. Under the bottom‐up strategy, the demand forecast for each item is directly obtained by using the historical demand data of the particular item. In both strategies, the forecasting technique used is exponential smoothing. We analytically evaluate the condition under which one forecasting strategy is preferred over the other when the lag‐1 autocorrelation of the demand time series for all the items is identical. We show that when the lag‐1 autocorrelation is smaller than or equal to 1/3, the maximum difference in the performance of the two forecasting strategies is only 1%. However, if the lag‐1 autocorrelation of the demand for at least one of the items is greater than 1/3, then the bottom‐up strategy consistently outperforms the top‐down strategy, irrespective of the items' proportion in the family and the coefficient of correlation between the item demands. A simulation study reveals that the analytical findings hold even when the lag‐1 autocorrelation of the demand processes is not identical. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.

Suggested Citation

  • Handik Widiarta & S. Viswanathan & Rajesh Piplani, 2007. "On the effectiveness of top‐down strategy for forecasting autoregressive demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 176-188, March.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:2:p:176-188
    DOI: 10.1002/nav.20200
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20200
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Shlifer & R. W. Wolff, 1979. "Aggregation and Proration in Forecasting," Management Science, INFORMS, vol. 25(6), pages 594-603, June.
    2. Everette S. Gardner, 1990. "Evaluating Forecast Performance in an Inventory Control System," Management Science, INFORMS, vol. 36(4), pages 490-499, April.
    3. Douglas M. Dunn & William H. Williams & W. Allen Spivey, 1971. "Analysis and Prediction of Telephone Demand in Local Geographical Areas," Bell Journal of Economics, The RAND Corporation, vol. 2(2), pages 561-576, Autumn.
    4. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
    2. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    2. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    3. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    4. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    5. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
    6. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    7. Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
    8. Danese, Pamela & Kalchschmidt, Matteo, 2011. "The role of the forecasting process in improving forecast accuracy and operational performance," International Journal of Production Economics, Elsevier, vol. 131(1), pages 204-214, May.
    9. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    10. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    11. R Fildes & B Kingsman, 2011. "Incorporating demand uncertainty and forecast error in supply chain planning models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 483-500, March.
    12. Winklhofer, Heidi & Diamantopoulos, Adamantios, 2003. "A model of export sales forecasting behavior and performance: development and testing," International Journal of Forecasting, Elsevier, vol. 19(2), pages 271-285.
    13. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    14. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    15. Zhao, Xiande & Xie, Jinxing & Leung, Janny, 2002. "The impact of forecasting model selection on the value of information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 142(2), pages 321-344, October.
    16. Lee, Jongkuk & Palekar, Udatta S. & Qualls, William, 2011. "Supply chain efficiency and security: Coordination for collaborative investment in technology," European Journal of Operational Research, Elsevier, vol. 210(3), pages 568-578, May.
    17. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    18. Joao Montez & Nicolas Schutz, 2021. "All-Pay Oligopolies: Price Competition with Unobservable Inventory Choices [Extremal Equilibria of Oligopolistic Supergames]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(5), pages 2407-2438.
    19. Jaksic, Marko & Rusjan, Borut, 2008. "The effect of replenishment policies on the bullwhip effect: A transfer function approach," European Journal of Operational Research, Elsevier, vol. 184(3), pages 946-961, February.
    20. Ranveer Singh Rana & Dinesh Kumar & Kanika Prasad & K. Mathiyazhagan, 2024. "Mitigating the impact of demand disruption on perishable inventory in a two-warehouse system," Operations Management Research, Springer, vol. 17(2), pages 469-504, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:2:p:176-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.