IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v53y2006i6p588-599.html
   My bibliography  Save this article

Modeling and analysis of uncertain time‐critical tasking problems

Author

Listed:
  • Donald P. Gaver
  • Patricia A. Jacobs
  • Gennady Samorodnitsky
  • Kevin D. Glazebrook

Abstract

This paper describes modeling and operational analysis of a generic asymmetric service‐system situation in which (a) Red agents, potentially threatening, but in another but important interpretation, are isolated friendlies, such as downed pilots, that require assistance and “arrive” according to some partially known and potentially changing pattern in time and space; and (b) Reds have effectively limited unknown deadlines or times of availability for Blue service, i.e., detection, classification, and attack in a military setting or emergency assistance in others. We discuss various service options by Blue service agents and devise several approximations allowing one to compute efficiently those proportions of tasks of different classes that are successfully served or, more generally, if different rewards are associated with different classes of tasks, the percentage of the possible reward gained. We suggest heuristic policies for a Blue server to select the next task to perform and to decide how much time to allocate to that service. We discuss this for a number of specific examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.

Suggested Citation

  • Donald P. Gaver & Patricia A. Jacobs & Gennady Samorodnitsky & Kevin D. Glazebrook, 2006. "Modeling and analysis of uncertain time‐critical tasking problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 588-599, September.
  • Handle: RePEc:wly:navres:v:53:y:2006:i:6:p:588-599
    DOI: 10.1002/nav.20162
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20162
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ward Whitt, 1999. "Improving Service by Informing Customers About Anticipated Delays," Management Science, INFORMS, vol. 45(2), pages 192-207, February.
    2. Becker, K. J. & Gaver, D. P. & Glazebrook, K. D. & Jacobs, P. A. & Lawphongpanich, S., 2000. "Allocation of tasks to specialized processors: A planning approach," European Journal of Operational Research, Elsevier, vol. 126(1), pages 80-88, October.
    3. John S. Osmundson, 2000. "A systems engineering methodology for information systems," Systems Engineering, John Wiley & Sons, vol. 3(2), pages 68-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terry James & Kevin Glazebrook & Kyle Lin, 2016. "Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 251-264, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    2. Jouini, Oualid & Dallery, Yves & Aksin, Zeynep, 2009. "Queueing models for full-flexible multi-class call centers with real-time anticipated delays," International Journal of Production Economics, Elsevier, vol. 120(2), pages 389-399, August.
    3. Qiuping Yu & Gad Allon & Achal Bassamboo, 2017. "How Do Delay Announcements Shape Customer Behavior? An Empirical Study," Management Science, INFORMS, vol. 63(1), pages 1-20, January.
    4. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    5. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2009. "Pointwise Stationary Fluid Models for Stochastic Processing Networks," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 70-89, August.
    6. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    7. Karen Donohue & Özalp Özer, 2020. "Behavioral Operations: Past, Present, and Future," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 191-202, January.
    8. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    9. Vasiliki Kostami & Amy R. Ward, 2009. "Managing Service Systems with an Offline Waiting Option and Customer Abandonment," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 644-656, November.
    10. Whitt, Ward, 2012. "Fitting birth-and-death queueing models to data," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 998-1004.
    11. Dinard van der Laan, 2015. "Assigning Multiple Job Types to Parallel Specialized Servers," Tinbergen Institute Discussion Papers 15-102/III, Tinbergen Institute.
    12. Miao Yu & Yu Zhao & Chunguang Chang & Liangliang Sun, 2023. "Fluid models for customer service web chat systems with interactive automated service," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 572-598, June.
    13. Gad Allon & Achal Bassamboo, 2011. "The Impact of Delaying the Delay Announcements," Operations Research, INFORMS, vol. 59(5), pages 1198-1210, October.
    14. Zeynep Akşin & Baris Ata & Seyed Morteza Emadi & Che-Lin Su, 2017. "Impact of Delay Announcements in Call Centers: An Empirical Approach," Operations Research, INFORMS, vol. 65(1), pages 242-265, February.
    15. Jamol Pender & Richard Rand & Elizabeth Wesson, 2020. "A Stochastic Analysis of Queues with Customer Choice and Delayed Information," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1104-1126, August.
    16. Constantinos Maglaras & Assaf Zeevi, 2005. "Pricing and Design of Differentiated Services: Approximate Analysis and Structural Insights," Operations Research, INFORMS, vol. 53(2), pages 242-262, April.
    17. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    18. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    19. Sweeney, Kevin D. & Sweeney, Donald C. & Campbell, James F., 2019. "The performance of priority dispatching rules in a complex job shop: A study on the Upper Mississippi River," International Journal of Production Economics, Elsevier, vol. 216(C), pages 154-172.
    20. Yong Tan & Vijay S. Mookerjee, 2005. "Allocating Spending Between Advertising and Information Technology in Electronic Retailing," Management Science, INFORMS, vol. 51(8), pages 1236-1249, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:53:y:2006:i:6:p:588-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.