IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i6p856-872.html
   My bibliography  Save this article

Index policies for the routing of background jobs

Author

Listed:
  • K.D. Glazebrook
  • C. Kirkbride

Abstract

Arriving (generic) jobs may be processed at one of several service stations, but only when no other (dedicated) jobs are waiting there. We consider the problem of how to route these incoming background jobs to make best use of the spare service capacity available at the stations. We develop an approximative approach to Whittle's proposal for restless bandits to obtain an index policy for routing. The indices concerned are increasing and nonlinear in the station workload. A numerical study testifies to the strong performance of the index policies developed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004

Suggested Citation

  • K.D. Glazebrook & C. Kirkbride, 2004. "Index policies for the routing of background jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 856-872, September.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:6:p:856-872
    DOI: 10.1002/nav.20034
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20034
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christos H. Papadimitriou & John N. Tsitsiklis, 1999. "The Complexity of Optimal Queuing Network Control," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 293-305, May.
    2. Ger Koole, 1996. "On the Pathwise Optimal Bernoulli Routing Policy for Homogeneous Parallel Servers," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 469-476, May.
    3. P S Ansell & K D Glazebrook & C Kirkbride, 2003. "Generalised ‘join the shortest queue’ policies for the dynamic routing of jobs to multi-class queues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 379-389, April.
    4. P. S. Ansell & K. D. Glazebrook & J. Niño-Mora & M. O'Keeffe, 2003. "Whittle's index policy for a multi-class queueing system with convex holding costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 21-39, April.
    5. Zhen Liu & Rhonda Righter, 1998. "Optimal Load Balancing on Distributed Homogeneous Unreliable Processors," Operations Research, INFORMS, vol. 46(4), pages 563-573, August.
    6. K.D. Glazebrook & H.M. Mitchell, 2002. "An index policy for a stochastic scheduling model with improving/deteriorating jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 706-721, October.
    7. M. Dacre & K. Glazebrook & J. Niño‐Mora, 1999. "The achievable region approach to the optimal control of stochastic systems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 747-791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. D. Glazebrook & R. Minty, 2009. "A Generalized Gittins Index for a Class of Multiarmed Bandits with General Resource Requirements," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 26-44, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Niño-Mora, 2006. "Restless Bandit Marginal Productivity Indices, Diminishing Returns, and Optimal Control of Make-to-Order/Make-to-Stock M/G/1 Queues," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 50-84, February.
    2. P S Ansell & K D Glazebrook & C Kirkbride, 2003. "Generalised ‘join the shortest queue’ policies for the dynamic routing of jobs to multi-class queues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 379-389, April.
    3. Nicolas Gast & Bruno Gaujal & Kimang Khun, 2023. "Testing indexability and computing Whittle and Gittins index in subcubic time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 391-436, June.
    4. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    5. Michelle Opp & Kevin Glazebrook & Vidyadhar G. Kulkarni, 2005. "Outsourcing warranty repairs: Dynamic allocation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 381-398, August.
    6. Down, Douglas G. & Lewis, Mark E., 2006. "Dynamic load balancing in parallel queueing systems: Stability and optimal control," European Journal of Operational Research, Elsevier, vol. 168(2), pages 509-519, January.
    7. Urtzi Ayesta & Manu K. Gupta & Ina Maria Verloop, 2021. "On the computation of Whittle’s index for Markovian restless bandits," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 179-208, February.
    8. José Niño-Mora, 2020. "A Verification Theorem for Threshold-Indexability of Real-State Discounted Restless Bandits," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 465-496, May.
    9. T. W. Archibald & D. P. Black & K. D. Glazebrook, 2009. "Indexability and Index Heuristics for a Simple Class of Inventory Routing Problems," Operations Research, INFORMS, vol. 57(2), pages 314-326, April.
    10. K. D. Glazebrook & R. Minty, 2009. "A Generalized Gittins Index for a Class of Multiarmed Bandits with General Resource Requirements," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 26-44, February.
    11. José Niño-Mora, 2023. "Markovian Restless Bandits and Index Policies: A Review," Mathematics, MDPI, vol. 11(7), pages 1-27, March.
    12. Sai Rajesh Mahabhashyam & Natarajan Gautam & Soundar R. T. Kumara, 2008. "Resource-Sharing Queueing Systems with Fluid-Flow Traffic," Operations Research, INFORMS, vol. 56(3), pages 728-744, June.
    13. José Niño-Mora, 2020. "Fast Two-Stage Computation of an Index Policy for Multi-Armed Bandits with Setup Delays," Mathematics, MDPI, vol. 9(1), pages 1-36, December.
    14. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    15. R. T. Dunn & K. D. Glazebrook, 2004. "Discounted Multiarmed Bandit Problems on a Collection of Machines with Varying Speeds," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 266-279, May.
    16. Glazebrook, K. D. & Mitchell, H. M. & Ansell, P. S., 2005. "Index policies for the maintenance of a collection of machines by a set of repairmen," European Journal of Operational Research, Elsevier, vol. 165(1), pages 267-284, August.
    17. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    18. José Niño-Mora, 2000. "On certain greedoid polyhedra, partially indexable scheduling problems and extended restless bandit allocation indices," Economics Working Papers 456, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Dong Li & Li Ding & Stephen Connor, 2020. "When to Switch? Index Policies for Resource Scheduling in Emergency Response," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 241-262, February.
    20. Peter Whittle, 2002. "Applied Probability in Great Britain," Operations Research, INFORMS, vol. 50(1), pages 227-239, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:6:p:856-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.