IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v46y1999i3p233-253.html
   My bibliography  Save this article

Value added analysis for army equipment modernization

Author

Listed:
  • Andrew G. Loerch
  • Robert R. Koury
  • Daniel T. Maxwell

Abstract

This paper describes the Value Added Analysis methodology which is used as part of the U.S. Army's Planning, Programming, Budgeting, and Execution System to assist the Army leadership in evaluating and prioritizing competing weapon system alternatives during the process of building the Army budget. The Value Added Analysis concept uses a family of models to estimate an alternative system's contribution to the Army's effectiveness using a multiattribute value hierarchy. A mathematical optimization model is then used to simultaneously determine an alternative's cost‐benefit and to identify an optimal mix of weapon systems for inclusion in the Army budget. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 233–253, 1999

Suggested Citation

  • Andrew G. Loerch & Robert R. Koury & Daniel T. Maxwell, 1999. "Value added analysis for army equipment modernization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 233-253, April.
  • Handle: RePEc:wly:navres:v:46:y:1999:i:3:p:233-253
    DOI: 10.1002/(SICI)1520-6750(199904)46:33.0.CO;2-D
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199904)46:33.0.CO;2-D
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199904)46:33.0.CO;2-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew G. Loerch, 1999. "Incorporating learning curve costs in acquisition strategy optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 255-271, April.
    2. James S. Dyer, 1990. "Remarks on the Analytic Hierarchy Process," Management Science, INFORMS, vol. 36(3), pages 249-258, March.
    3. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    4. Nicholas G. Hall & John C. Hershey & Larry G. Kessler & R. Craig Stotts, 1992. "A Model for Making Project Funding Decisions at the National Cancer Institute," Operations Research, INFORMS, vol. 40(6), pages 1040-1052, December.
    5. Edwards, Ward & Barron, F. Hutton, 1994. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 306-325, December.
    6. Coyle, R. G., 1992. "The optimisation of defence expenditure," European Journal of Operational Research, Elsevier, vol. 56(3), pages 304-318, February.
    7. James S. Dyer, 1990. "A Clarification of "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 274-275, March.
    8. Dutton, John M. & Thomas, Annie & Butler, John E., 1984. "The History of Progress Functions as a Managerial Technology," Business History Review, Cambridge University Press, vol. 58(2), pages 204-233, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew G. Loerch, 1999. "Incorporating learning curve costs in acquisition strategy optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 255-271, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katie Steele & Yohay Carmel & Jean Cross & Chris Wilcox, 2009. "Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental Decision Making," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 26-33, January.
    2. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    3. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    4. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    5. Zachary F. Lansdowne, 1996. "Ordinal ranking methods for multicriterion decision making," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 613-627, August.
    6. Devesh Kumar & Gunjan Soni & Rohit Joshi & Vipul Jain & Amrik Sohal, 2022. "Modelling supply chain viability during COVID-19 disruption: A case of an Indian automobile manufacturing supply chain," Operations Management Research, Springer, vol. 15(3), pages 1224-1240, December.
    7. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    8. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    9. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    10. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    11. Fujun Hou, 2016. "Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    12. Majumdar, Abhijit & Tiwari, Manoj Kumar & Agarwal, Aastha & Prajapat, Kanika, 2021. "A new case of rank reversal in analytic hierarchy process due to aggregation of cost and benefit criteria," Operations Research Perspectives, Elsevier, vol. 8(C).
    13. Liu, Qizhi, 2022. "Identifying and correcting the defects of the Saaty analytic hierarchy/network process: A comparative study of the Saaty analytic hierarchy/network process and the Markov chain-based analytic network ," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Bentes, Alexandre Veronese & Carneiro, Jorge & da Silva, Jorge Ferreira & Kimura, Herbert, 2012. "Multidimensional assessment of organizational performance: Integrating BSC and AHP," Journal of Business Research, Elsevier, vol. 65(12), pages 1790-1799.
    15. Benedetto Barabino & Nicola Aldo Cabras & Claudio Conversano & Alessandro Olivo, 2020. "An Integrated Approach to Select Key Quality Indicators in Transit Services," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1045-1080, June.
    16. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    17. Qingxian An & Fanyong Meng & Beibei Xiong, 2018. "Interval cross efficiency for fully ranking decision making units using DEA/AHP approach," Annals of Operations Research, Springer, vol. 271(2), pages 297-317, December.
    18. Saul I. Gass, 2005. "Model World: The Great Debate—MAUT Versus AHP," Interfaces, INFORMS, vol. 35(4), pages 308-312, August.
    19. Butler, John C. & Dyer, James S. & Jia, Jianmin & Tomak, Kerem, 2008. "Enabling e-transactions with multi-attribute preference models," European Journal of Operational Research, Elsevier, vol. 186(2), pages 748-765, April.
    20. Surendra Kansara & Sachin Modgil & Rupesh Kumar, 2023. "Structural transformation of fuzzy analytical hierarchy process: a relevant case for Covid-19," Operations Management Research, Springer, vol. 16(1), pages 450-465, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:46:y:1999:i:3:p:233-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.