IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v44y1997i6p531-557.html
   My bibliography  Save this article

Scheduling stochastic jobs with asymmetric earliness and tardiness penalties

Author

Listed:
  • X. Cai
  • S. Zhou

Abstract

We consider a stochastic counterpart of the well‐known earliness‐tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow‐time penalty. One of our main results is that an optimal sequence for the problem must be V‐shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near‐optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.

Suggested Citation

  • X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.
  • Handle: RePEc:wly:navres:v:44:y:1997:i:6:p:531-557
    DOI: 10.1002/(SICI)1520-6750(199709)44:63.0.CO;2-4
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199709)44:63.0.CO;2-4
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199709)44:63.0.CO;2-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Pinedo, 1983. "Stochastic Scheduling with Release Dates and Due Dates," Operations Research, INFORMS, vol. 31(3), pages 559-572, June.
    2. Stephen J. Balut, 1973. "Scheduling to Minimize the Number of Late Jobs When Set-Up and Processing Times are Uncertain," Management Science, INFORMS, vol. 19(11), pages 1283-1288, July.
    3. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    4. Yano, Candace Arai & Kim, Yeong-Dae, 1991. "Algorithms for a class of single-machine weighted tardiness and earliness problems," European Journal of Operational Research, Elsevier, vol. 52(2), pages 167-178, May.
    5. Sarin, Subhash C. & Erel, Erdal & Steiner, George, 1991. "Sequencing jobs on a single machine with a common due date and stochastic processing times," European Journal of Operational Research, Elsevier, vol. 51(2), pages 188-198, March.
    6. S. Chakravarthy, 1986. "A single‐machine scheduling problem with random processing times," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(3), pages 391-397, August.
    7. Nicholas G. Hall & Wieslaw Kubiak & Suresh P. Sethi, 1991. "Earliness–Tardiness Scheduling Problems, II: Deviation of Completion Times About a Restrictive Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 847-856, October.
    8. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    9. Vina Vani & M. Raghavachari, 1987. "Deterministic and Random Single Machine Sequencing with Variance Minimization," Operations Research, INFORMS, vol. 35(1), pages 111-120, February.
    10. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    11. John Mittenthal & M. Raghavachari, 1993. "Stochastic Single Machine Scheduling with Quadratic Early-Tardy Penalties," Operations Research, INFORMS, vol. 41(4), pages 786-796, August.
    12. Nicholas G. Hall & Marc E. Posner, 1991. "Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 836-846, October.
    13. Wlodzimierz Szwarc, 1989. "Single‐machine scheduling to minimize absolute deviation of completion times from a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 663-673, October.
    14. John J. Kanet, 1981. "Minimizing Variation of Flow Time in Single Machine Systems," Management Science, INFORMS, vol. 27(12), pages 1453-1459, December.
    15. Hamilton Emmons, 1987. "Scheduling to a common due date on parallel uniform processors," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(6), pages 803-810, December.
    16. Soroush, H. M. & Fredendall, L. D., 1994. "The stochastic single machine scheduling problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 77(2), pages 287-302, September.
    17. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    2. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
    3. Xiaoqiang Cai & Sean Zhou, 1999. "Stochastic Scheduling on Parallel Machines Subject to Random Breakdowns to Minimize Expected Costs for Earliness and Tardy Jobs," Operations Research, INFORMS, vol. 47(3), pages 422-437, June.
    4. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    5. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    6. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
    7. Adamopoulos, G. I. & Pappis, C. P., 1996. "Scheduling jobs with different, job-dependent earliness and tardiness penalties using the SLK method," European Journal of Operational Research, Elsevier, vol. 88(2), pages 336-344, January.
    8. Soroush, H.M., 2007. "Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 181(1), pages 266-287, August.
    9. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    10. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
    11. Soroush, H. M., 1999. "Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 113(2), pages 450-468, March.
    12. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    13. Zhi-Long Chen, 1997. "Scheduling with batch setup times and earliness-tardiness penalties," European Journal of Operational Research, Elsevier, vol. 96(3), pages 518-537, February.
    14. Adamopoulos, G. I. & Pappis, C. P., 1995. "The CON due-date determination method with processing time-dependent lateness penalties," International Journal of Production Economics, Elsevier, vol. 40(1), pages 29-36, June.
    15. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
    16. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    17. Y. P. Aneja & S. N. Kabadi & A. Nagar, 1998. "Minimizing weighted mean absolute deviation of flow times in single machine systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 297-311, April.
    18. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    19. Mosheiov, Gur & Shadmon, Michal, 2001. "Minmax earliness-tardiness costs with unit processing time jobs," European Journal of Operational Research, Elsevier, vol. 130(3), pages 638-652, May.
    20. Ramon Alvarez-Valdes & Enric Crespo & Jose Tamarit & Fulgencia Villa, 2012. "Minimizing weighted earliness–tardiness on a single machine with a common due date using quadratic models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 754-767, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:44:y:1997:i:6:p:531-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.