IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i7p971-984.html
   My bibliography  Save this article

Sequencing with setup time and order tardiness trade‐offs

Author

Listed:
  • Ching‐Jong Liao
  • Cheng‐Hsing Chuang

Abstract

We consider the problem of scheduling customer orders on a single facility where each order consists of several jobs that can be clustered into several groups. When a facility is changed over to another group, a setup time associated with the new group is required. Two particular problems are considered in this context. One is to consider the total setup time and the number of tardy orders jointly. The other is to consider the total setup time and the maximum tardiness jointly. The total setup time in both problems represents a measure of internal efficiency, whereas the number of tardy orders and the maximum tardiness represent a measure of external efficiency. In any shop, the decision maker must consider the tradeoffs between large setup costs associated with a more frequent changeover schedule versus the cost of tardy orders that might be induced by a less‐frequent changeover schedule. In this article branch‐and‐bound algorithms are proposed to identify the set of nondominated schedules for the two bicriteria problems. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Ching‐Jong Liao & Cheng‐Hsing Chuang, 1996. "Sequencing with setup time and order tardiness trade‐offs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(7), pages 971-984, October.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:7:p:971-984
    DOI: 10.1002/(SICI)1520-6750(199610)43:73.0.CO;2-A
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199610)43:73.0.CO;2-A
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199610)43:73.0.CO;2-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fry, TD & Armstrong, RD & Lewis, H, 1989. "A framework for single machine multiple objective sequencing research," Omega, Elsevier, vol. 17(6), pages 595-607.
    2. Yasemin Aksoy, 1990. "An interactive branch‐and‐bound algorithm for bicriterion nonconvex/mixed integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 403-417, June.
    3. Dudek, RA & Smith, ML & Panwalkar, SS, 1974. "Use of a case study in sequencing/scheduling research," Omega, Elsevier, vol. 2(2), pages 253-261, April.
    4. Azizoglu, Meral & Kondakci, Suna & Kirca, Omer, 1991. "Bicriteria scheduling problem involving total tardiness and total earliness penalties," International Journal of Production Economics, Elsevier, vol. 23(1-3), pages 17-24, October.
    5. Ali S. Kiran & Ali Tamer Unal, 1991. "A single‐machine problem with multiple criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 721-727, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhash C. Sarin & Divya Prakash, 2004. "Equal Processing Time Bicriteria Scheduling on Parallel Machines," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 227-240, September.
    2. Suna Köksalan Kondakci & Meral Azizoglu & Murat Köksalan, 1996. "Note: Bicriteria scheduling for minimizing flow time and maximum tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 929-936, September.
    3. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    4. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    5. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    6. Wan S. Shin & Diane Breivik Allen, 1994. "An interactive paired comparison method for bicriterion integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 423-434, April.
    7. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    8. Hesaraki, Alireza F. & Dellaert, Nico P. & de Kok, Ton, 2019. "Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan," European Journal of Operational Research, Elsevier, vol. 275(1), pages 304-318.
    9. Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
    10. Haral, Uday & Chen, Rew-Win & Ferrell, William Jr & Kurz, Mary Beth, 2007. "Multiobjective single machine scheduling with nontraditional requirements," International Journal of Production Economics, Elsevier, vol. 106(2), pages 574-584, April.
    11. T'kindt, V. & Billaut, J-C. & Proust, C., 2001. "Solving a bicriteria scheduling problem on unrelated parallel machines occurring in the glass bottle industry," European Journal of Operational Research, Elsevier, vol. 135(1), pages 42-49, November.
    12. Adamopoulos, George I. & Pappis, Costas P., 1996. "A fuzzy-linguistic approach to a multi-criteria sequencing problem," European Journal of Operational Research, Elsevier, vol. 92(3), pages 628-636, August.
    13. M. Murat Köksalan, 1999. "A heuristic approach to bicriteria scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 777-789, October.
    14. Mina Roohnavazfar & Daniele Manerba & Lohic Fotio Tiotsop & Seyed Hamid Reza Pasandideh & Roberto Tadei, 2021. "Stochastic single machine scheduling problem as a multi-stage dynamic random decision process," Computational Management Science, Springer, vol. 18(3), pages 267-297, July.
    15. Neppalli, Venkata Ranga & Chen, Chuen-Lung & Gupta, Jatinder N. D., 1996. "Genetic algorithms for the two-stage bicriteria flowshop problem," European Journal of Operational Research, Elsevier, vol. 95(2), pages 356-373, December.
    16. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
    17. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    18. Sivrikaya-Serifoglu, Funda & Ulusoy, Gunduz, 1998. "A bicriteria two-machine permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 414-430, June.
    19. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    20. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:7:p:971-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.