IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i3p319-333.html
   My bibliography  Save this article

Optimal number of minimal repairs before replacement of a system subject to shocks

Author

Listed:
  • Shey‐Huei Sheu
  • William S. Griffith

Abstract

A system is subject to shocks that arrive according to a nonhomogeneous Poisson process. As shocks occur a system has two types of failures. Type 1 failure (minor failure) is removed by a minimal repair, whereas type 2 failure (catastrophic failure) is removed by replacement. The probability of a type 2 failure is permitted to depend on the number of shocks since the last replacement. A system is replaced at the times of type 2 failure or at the nth type 1 failure, whichever comes first. The optimal policy is to select n* to minimize the expected cost per unit time for an infinite time span. A numerical example is given to illustrate the method. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Shey‐Huei Sheu & William S. Griffith, 1996. "Optimal number of minimal repairs before replacement of a system subject to shocks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 319-333, April.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:3:p:319-333
    DOI: 10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dror Zuckerman, 1980. "A note on the optimal replacement time of damaged devices," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(3), pages 521-524, September.
    2. Sheu, Shey-Huei, 1993. "A generalized model for determining optimal number of minimal repairs before replacement," European Journal of Operational Research, Elsevier, vol. 69(1), pages 38-49, August.
    3. Prem S. Puri & Harshinder Singh, 1986. "Optimum Replacement of a System Subject to Shocks: A Mathematical Lemma," Operations Research, INFORMS, vol. 34(5), pages 782-789, October.
    4. Howard M. Taylor, 1975. "Optimal replacement under additive damage and other failure models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(1), pages 1-18, March.
    5. Philip J. Boland & Frank Proschan, 1983. "Optimum Replacement of a System Subject to Shocks," Operations Research, INFORMS, vol. 31(4), pages 697-704, August.
    6. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    2. Y-H Chien & C-C Chang & S-H Sheu, 2009. "Optimal periodical time for preventive replacement based on a cumulative repair-cost limit and random lead time," Journal of Risk and Reliability, , vol. 223(4), pages 333-345, December.
    3. Shey-Huei Sheu & Hsin-Nan Tsai & Tsung-Shin Hsu & Fu-Kwun Wang, 2015. "Optimal number of minimal repairs before replacement of a deteriorating system with inspections," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(8), pages 1367-1379, June.
    4. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    5. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien, Yu-Hung & Sheu, Shey-Huei & Zhang, Zhe George & Love, Ernie, 2006. "An extended optimal replacement model of systems subject to shocks," European Journal of Operational Research, Elsevier, vol. 175(1), pages 399-412, November.
    2. Sheu, Shey-Huei & Griffith, William S., 2002. "Extended block replacement policy with shock models and used items," European Journal of Operational Research, Elsevier, vol. 140(1), pages 50-60, July.
    3. Sheu, Shey-Huei & Chang, Chin-Chih & Zhang, Zhe George & Chien, Yu-Hung, 2012. "A note on replacement policy for a system subject to non-homogeneous pure birth shocks," European Journal of Operational Research, Elsevier, vol. 216(2), pages 503-508.
    4. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    5. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    6. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    7. Chien, Yu-Hung & Sheu, Shey-Huei, 2006. "Extended optimal age-replacement policy with minimal repair of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 174(1), pages 169-181, October.
    8. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    9. Biswas, Atanu & Sarkar, Jyotirmoy, 2000. "Availability of a system maintained through several imperfect repairs before a replacement or a perfect repair," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 105-114, November.
    10. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    11. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    12. Dubi, A., 1998. "Analytic approach & Monte Carlo methods for realistic systems analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 243-269.
    13. Caiyun Niu & Xiaolin Liang & Bingfeng Ge & Xue Tian & Yingwu Chen, 2016. "Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process," Annals of Operations Research, Springer, vol. 244(1), pages 49-66, September.
    14. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Chattopadhyay, Gopinath & Rahman, Anisur, 2008. "Development of lifetime warranty policies and models for estimating costs," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 522-529.
    16. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    17. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    18. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    19. Navarro, Jorge & Arriaza, Antonio & Suárez-Llorens, Alfonso, 2019. "Minimal repair of failed components in coherent systems," European Journal of Operational Research, Elsevier, vol. 279(3), pages 951-964.
    20. Amini, Morteza & Balakrishnan, N., 2013. "Nonparametric meta-analysis of independent samples of records," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 70-81.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:3:p:319-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.