Minimizing the weighted sum of quadratic completion times on a single machine
Author
Abstract
Suggested Citation
DOI: 10.1002/1520-6750(199512)42:83.0.CO;2-A
Download full text from publisher
References listed on IDEAS
- P. C. Bagga & K. R. Kalra, 1980. "Note---A Node Elimination Procedure for Townsend's Algorithm for Solving the Single Machine Quadratic Penalty Function Scheduling Problem," Management Science, INFORMS, vol. 26(6), pages 633-636, June.
- Sushil K. Gupta & Tapan Sen, 1984. "Note---On the Single Machine Scheduling Problem with Quadratic Penalty Function of Completion Times: An Improved Branching Procedure," Management Science, INFORMS, vol. 30(5), pages 644-647, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mondal, Sakib A. & Sen, Anup K., 2000. "An improved precedence rule for single machine sequencing problems with quadratic penalty," European Journal of Operational Research, Elsevier, vol. 125(2), pages 425-428, September.
- Janiak, Adam & Krysiak, Tomasz & Pappis, Costas P. & Voutsinas, Theodore G., 2009. "A scheduling problem with job values given as a power function of their completion times," European Journal of Operational Research, Elsevier, vol. 193(3), pages 836-848, March.
- Cheng, T. C. Edwin & Shakhlevich, Natalia V., 2005. "Minimizing non-decreasing separable objective functions for the unit-time open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(2), pages 444-456, September.
- Szwarc, Wlodzimierz & Mukhopadhyay, Samar K., 1996. "Solution of the generalized Townsend single machine scheduling model," European Journal of Operational Research, Elsevier, vol. 91(1), pages 203-210, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Schaller, Jeffrey, 2002. "Minimizing the sum of squares lateness on a single machine," European Journal of Operational Research, Elsevier, vol. 143(1), pages 64-79, November.
- Cheng, T. C. Edwin & Shakhlevich, Natalia V., 2005. "Minimizing non-decreasing separable objective functions for the unit-time open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(2), pages 444-456, September.
- Mondal, Sakib A. & Sen, Anup K., 2000. "An improved precedence rule for single machine sequencing problems with quadratic penalty," European Journal of Operational Research, Elsevier, vol. 125(2), pages 425-428, September.
- Nikhil Bansal & Christoph Dürr & Nguyen Kim Thang & Óscar C. Vásquez, 2017. "The local–global conjecture for scheduling with non-linear cost," Journal of Scheduling, Springer, vol. 20(3), pages 239-254, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:42:y:1995:i:8:p:1263-1270. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.