IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v26y1980i6p633-636.html
   My bibliography  Save this article

Note---A Node Elimination Procedure for Townsend's Algorithm for Solving the Single Machine Quadratic Penalty Function Scheduling Problem

Author

Listed:
  • P. C. Bagga

    (University of Delhi)

  • K. R. Kalra

    (University of Delhi)

Abstract

In this note, a node elimination procedure has been suggested in case the two sequences obtained by using Townsend's (Townsend, W. 1978. The single machine problem with quadratic penalty function of completion times: A branch and bound solution. Management Sci. 24 (5) 530--534.) sufficient conditions for solving the single machine quadratic penalty function scheduling problem contain a subset J r of r jobs in the first r positions. Numerical illustrations and computational experience has been given in the end.

Suggested Citation

  • P. C. Bagga & K. R. Kalra, 1980. "Note---A Node Elimination Procedure for Townsend's Algorithm for Solving the Single Machine Quadratic Penalty Function Scheduling Problem," Management Science, INFORMS, vol. 26(6), pages 633-636, June.
  • Handle: RePEc:inm:ormnsc:v:26:y:1980:i:6:p:633-636
    DOI: 10.1287/mnsc.26.6.633
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.26.6.633
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.26.6.633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Della Croce & Wlodzimierz Szwarc & Roberto Tadei & Paolo Baracco & Raffaele di Tullio, 1995. "Minimizing the weighted sum of quadratic completion times on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1263-1270, December.
    2. Mondal, Sakib A. & Sen, Anup K., 2000. "An improved precedence rule for single machine sequencing problems with quadratic penalty," European Journal of Operational Research, Elsevier, vol. 125(2), pages 425-428, September.
    3. Cheng, T. C. Edwin & Shakhlevich, Natalia V., 2005. "Minimizing non-decreasing separable objective functions for the unit-time open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(2), pages 444-456, September.
    4. Schaller, Jeffrey, 2002. "Minimizing the sum of squares lateness on a single machine," European Journal of Operational Research, Elsevier, vol. 143(1), pages 64-79, November.
    5. Nikhil Bansal & Christoph Dürr & Nguyen Kim Thang & Óscar C. Vásquez, 2017. "The local–global conjecture for scheduling with non-linear cost," Journal of Scheduling, Springer, vol. 20(3), pages 239-254, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:26:y:1980:i:6:p:633-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.