IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v39y1992i7p975-996.html
   My bibliography  Save this article

Computing stationary queueing‐time distributions of GI/D/1 and GI/D/c queues

Author

Listed:
  • M. L. Chaudhry

Abstract

This article gives closed‐form analytic expressions as well as the exact computational analysis of stationary queueing‐time distribution for the GI/D/I queue. By exploiting the relationship between the distributions of queueing times of GI/D/1 and GI/D/c queues, the computational analysis of the queueing‐time distribution of GI/D/c queue is also done. Numerical results are presented for (i) the first two moments of queueing time and (ii) the probability that queueing time is zero. Also, comments are made regarding the graphs of the distribution functions for particular cases of Em/D/1 and HE2/D/1. Some further properties such as computing the pre‐ and postdeparture probabilities for GI/D/1 are also discussed. The results discussed here should prove to be useful to practitioners and queueing theorists dealing with inequalities, bounds, et cetera. © 1992 John Wiley & Sons, Inc.

Suggested Citation

  • M. L. Chaudhry, 1992. "Computing stationary queueing‐time distributions of GI/D/1 and GI/D/c queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(7), pages 975-996, December.
  • Handle: RePEc:wly:navres:v:39:y:1992:i:7:p:975-996
    DOI: 10.1002/1520-6750(199212)39:73.0.CO;2-X
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199212)39:73.0.CO;2-X
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199212)39:73.0.CO;2-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohan L. Chaudhry & Carl M. Harris & William G. Marchal, 1990. "Robustness of Rootfinding in Single-Server Queueing Models," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 273-286, August.
    2. Toshikazu Kimura, 1986. "A Two-Moment Approximation for the Mean Waiting Time in the GI/G/s Queue," Management Science, INFORMS, vol. 32(6), pages 751-763, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. L. Chaudhry & Veena Goswami, 2019. "The Queue Geo/G/1/N + 1 Revisited," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 155-168, March.
    2. Pinai Linwong* & Nei Kato* & Yoshiaki Nemoto*, 2004. "A Polynomial Factorization Approach for the Discrete Time GIX/>G/1/K Queue," Methodology and Computing in Applied Probability, Springer, vol. 6(3), pages 277-291, September.
    3. P. Patrick Wang, 1993. "Static and dynamic scheduling of customer arrivals to a single‐server system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 345-360, April.
    4. James J. Kim & Douglas G. Down & Mohan Chaudhry & Abhijit Datta Banik, 2022. "Difference Equations Approach for Multi-Server Queueing Models with Removable Servers," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1297-1321, September.
    5. S. K. Samanta & M. L. Chaudhry & A. Pacheco, 2016. "Analysis of B M A P/M S P/1 Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 419-440, June.
    6. M. L. Chaudhry & Gagandeep Singh & U. C. Gupta, 2013. "A Simple and Complete Computational Analysis of MAP/R/1 Queue Using Roots," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 563-582, September.
    7. M. L. Chaudhry & A. D. Banik & A. Pacheco, 2017. "A simple analysis of the batch arrival queue with infinite-buffer and Markovian service process using roots method: $$ GI ^{[X]}/C$$ G I [ X ] / C - $$ MSP /1/\infty $$ M S P / 1 / ∞," Annals of Operations Research, Springer, vol. 252(1), pages 135-173, May.
    8. Mohan Chaudhry & Abhijit Datta Banik & Sitaram Barik & Veena Goswami, 2023. "A Novel Computational Procedure for the Waiting-Time Distribution (In the Queue) for Bulk-Service Finite-Buffer Queues with Poisson Input," Mathematics, MDPI, vol. 11(5), pages 1-26, February.
    9. Mohan L. Chaudhry & James J. Kim, 2016. "Analytically elegant and computationally efficient results in terms of roots for the $$GI^{X}/M/c$$ G I X / M / c queueing system," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 237-257, February.
    10. S. K. Samanta, 2020. "Waiting-time analysis of D-$${ BMAP}{/}G{/}1$$BMAP/G/1 queueing system," Annals of Operations Research, Springer, vol. 284(1), pages 401-413, January.
    11. Mohan Chaudhry & Veena Goswami, 2022. "The Geo / G a , Y /1/ N Queue Revisited," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    12. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    13. J. S. H. van Leeuwaarden, 2006. "Delay Analysis for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(2), pages 189-199, May.
    14. Muhammad El-Taha & Bacel Maddah, 2006. "Allocation of Service Time in a Multiserver System," Management Science, INFORMS, vol. 52(4), pages 623-637, April.
    15. Carlos Chaves & Abhijit Gosavi, 2022. "On general multi-server queues with non-poisson arrivals and medium traffic: a new approximation and a COVID-19 ventilator case study," Operational Research, Springer, vol. 22(5), pages 5205-5229, November.
    16. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    17. Le-Duc, Tho & de Koster, Rene M.B.M., 2007. "Travel time estimation and order batching in a 2-block warehouse," European Journal of Operational Research, Elsevier, vol. 176(1), pages 374-388, January.
    18. Maddah, Bacel & Nasr, Walid W. & Charanek, Ali, 2017. "A multi-station system for reducing congestion in high-variability queues," European Journal of Operational Research, Elsevier, vol. 262(2), pages 602-619.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:39:y:1992:i:7:p:975-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.