IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v39y1992i7p957-974.html
   My bibliography  Save this article

On reversibility of tandem queues with blocking

Author

Listed:
  • Xiuli Chao
  • Michael Pinedo

Abstract

We study the effect of the order of service stations on the departure process in a tandem system with finite buffers and blocking. A reversibility result for a twostation system with various types of blocking mechanisms has been shown before. We show that a similar result holds for a three‐station tandem system with no buffers between stations and a so‐called communication type of blocking. A general conjecture is stated regarding the reversibility of tandem systems with finite buffers and blocking. © 1992 John Wiley & Sons, Inc.

Suggested Citation

  • Xiuli Chao & Michael Pinedo, 1992. "On reversibility of tandem queues with blocking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(7), pages 957-974, December.
  • Handle: RePEc:wly:navres:v:39:y:1992:i:7:p:957-974
    DOI: 10.1002/1520-6750(199212)39:73.0.CO;2-3
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199212)39:73.0.CO;2-3
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199212)39:73.0.CO;2-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Melamed, 1986. "Note---A Note on the Reversibility and Duality of Some Tandem Blocking Queueing Systems," Management Science, INFORMS, vol. 32(12), pages 1648-1650, December.
    2. Eginhard J. Muth, 1979. "The Reversibility Property of Production Lines," Management Science, INFORMS, vol. 25(2), pages 152-158, February.
    3. Henry D. Friedman, 1965. "Reduction Methods for Tandem Queuing Systems," Operations Research, INFORMS, vol. 13(1), pages 121-131, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    3. He, Qi-Ming & Chao, Xiuli, 2014. "A tollbooth tandem queue with heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 236(1), pages 177-189.
    4. Wu, Kan & Zhao, Ning, 2015. "Dependence among single stations in series and its applications in productivity improvement," European Journal of Operational Research, Elsevier, vol. 247(1), pages 245-258.
    5. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    6. Kamburowski, J., 1997. "The nature of simplicity of Johnson's algorithm," Omega, Elsevier, vol. 25(5), pages 581-584, October.
    7. O'Connell, Neil & Yor, Marc, 2001. "Brownian analogues of Burke's theorem," Stochastic Processes and their Applications, Elsevier, vol. 96(2), pages 285-304, December.
    8. Hyoungtae Kim & Sungsoo Park, 1999. "Optimality of the Symmetric Workload Allocation in a Single-Server Flow Line System," Management Science, INFORMS, vol. 45(3), pages 449-451, March.
    9. Suresh Chand & Ting Zeng, 2001. "A Comparison of U-Line and Straight-Line Performances Under Stochastic Task Times," Manufacturing & Service Operations Management, INFORMS, vol. 3(2), pages 138-150, January.
    10. Steven J. Erlebacher & Medini R. Singh, 1999. "Optimal Variance Structures and Performance Improvement of Synchronous Assembly Lines," Operations Research, INFORMS, vol. 47(4), pages 601-618, August.
    11. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
    12. Benjamin Avi-Itzhak & Hanoch Levy, 2001. "Buffer Requirements and Server Ordering in a Tandem Queue with Correlated Service Times," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 358-374, May.
    13. Nakade, Koichi, 2000. "New bounds for expected cycle times in tandem queues with blocking," European Journal of Operational Research, Elsevier, vol. 125(1), pages 84-92, August.
    14. Michael Vidalis & Stelios Koukoumialos & Alexandros Diamantidis & George Blanas, 2022. "Analysis of a two echelon supply chain with merging suppliers, a storage area and a distribution center with parallel channels," Operational Research, Springer, vol. 22(1), pages 703-740, March.
    15. Benavides, Alexander J. & Vera, Antony, 2022. "The reversibility property in a job-insertion tiebreaker for the permutational flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 407-421.
    16. Gultekin, Hakan, 2012. "Scheduling in flowshops with flexible operations: Throughput optimization and benefits of flexibility," International Journal of Production Economics, Elsevier, vol. 140(2), pages 900-911.
    17. Wai Kin (Victor) Chan & Lee Schruben, 2008. "Optimization Models of Discrete-Event System Dynamics," Operations Research, INFORMS, vol. 56(5), pages 1218-1237, October.
    18. Liu, Liming & Yuan, Xue-Ming, 2001. "Throughput, flow times, and service level in an unreliable assembly system," European Journal of Operational Research, Elsevier, vol. 135(3), pages 602-615, December.
    19. Jeffrey M. Alden & Lawrence D. Burns & Theodore Costy & Richard D. Hutton & Craig A. Jackson & David S. Kim & Kevin A. Kohls & Jonathan H. Owen & Mark A. Turnquist & David J. Vander Veen, 2006. "General Motors Increases Its Production Throughput," Interfaces, INFORMS, vol. 36(1), pages 6-25, February.
    20. Cathy H. Xia & George J. Shanthikumar & Peter W. Glynn, 2000. "On the Asymptotic Optimality of the SPT Rule for the Flow Shop Average Completion Time Problem," Operations Research, INFORMS, vol. 48(4), pages 615-622, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:39:y:1992:i:7:p:957-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.