IDEAS home Printed from https://ideas.repec.org/a/wly/jpamgt/v37y2018i2p403-429.html
   My bibliography  Save this article

The Internal And External Validity Of The Regression Discontinuity Design: A Meta‐Analysis Of 15 Within‐Study Comparisons

Author

Listed:
  • Duncan D. Chaplin
  • Thomas D. Cook
  • Jelena Zurovac
  • Jared S. Coopersmith
  • Mariel M. Finucane
  • Lauren N. Vollmer
  • Rebecca E. Morris

Abstract

Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta‐analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study‐specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.

Suggested Citation

  • Duncan D. Chaplin & Thomas D. Cook & Jelena Zurovac & Jared S. Coopersmith & Mariel M. Finucane & Lauren N. Vollmer & Rebecca E. Morris, 2018. "The Internal And External Validity Of The Regression Discontinuity Design: A Meta‐Analysis Of 15 Within‐Study Comparisons," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 37(2), pages 403-429, March.
  • Handle: RePEc:wly:jpamgt:v:37:y:2018:i:2:p:403-429
    DOI: 10.1002/pam.22051
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/pam.22051
    Download Restriction: no

    File URL: https://libkey.io/10.1002/pam.22051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    2. David Wuepper & Robert Finger, 2023. "Regression discontinuity designs in agricultural and environmental economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(1), pages 1-28.
    3. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03455978, HAL.
    4. repec:zbw:itse23:277968 is not listed on IDEAS
    5. Jared Coopersmith & Thomas D. Cook & Jelena Zurovac & Duncan Chaplin & Lauren V. Forrow, 2022. "Internal And External Validity Of The Comparative Interrupted Time‐Series Design: A Meta‐Analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(1), pages 252-277, January.
    6. Denis Fougère & Nicolas Jacquemet, 2019. "Causal Inference and Impact Evaluation," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 181-200.
    7. Yang Tang & Thomas D. Cook, 2018. "Statistical Power for the Comparative Regression Discontinuity Design With a Pretest No-Treatment Control Function: Theory and Evidence From the National Head Start Impact Study," Evaluation Review, , vol. 42(1), pages 71-110, February.
    8. Tim Bartik, 2023. "Seize the Time: Needed Research on Local Economic Development in an Era of Increased Attention to Problems of Place," Economic Development Quarterly, , vol. 37(1), pages 7-13, February.
    9. Saavedra, Martin, 2021. "Kenji or Kenneth? Pearl Harbor and Japanese-American assimilation," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 602-624.
    10. Vivian C. Wong & Peter M. Steiner & Kylie L. Anglin, 2018. "What Can Be Learned From Empirical Evaluations of Nonexperimental Methods?," Evaluation Review, , vol. 42(2), pages 147-175, April.
    11. Sherry Glied, 2022. "Presidential Address: Connecting the Dots: Turning Research Evidence into Evidence for Policymaking," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(3), pages 676-682, June.
    12. Pietro Santoleri & Andrea Mina & Alberto Di Minin & Irene Martelli, 2020. "The causal effects of R&D grants: evidence from a regression discontinuity," LEM Papers Series 2020/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Sam Sims & Jake Anders & Matthew Inglis & Hugues Lortie-Forgues & Ben Styles & Ben Weidmann, 2023. "Experimental education research: rethinking why, how and when to use random assignment," CEPEO Working Paper Series 23-07, UCL Centre for Education Policy and Equalising Opportunities, revised Aug 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jpamgt:v:37:y:2018:i:2:p:403-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/journal/34787/home .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.