IDEAS home Printed from https://ideas.repec.org/a/wly/jnlaaa/v5y2000i4p207-226.html
   My bibliography  Save this article

Integration with respect to a vector measure and function approximation

Author

Listed:
  • L. M. García-Raffi
  • D. Ginestar
  • E. A. Sánchez-Pérez

Abstract

The integration with respect to a vector measure may be applied in order to approximate a function in a Hilbert space by means of a finite orthogonal sequence {fi} attending to two different error criterions. In particular, if Ω ∈ ℝ is a Lebesgue measurable set, f ∈ L2(Ω), and {Ai} is a finite family of disjoint subsets of Ω, we can obtain a measure μ0 and an approximation f0 satisfying the following conditions: (1) f0 is the projection of the function f in the subspace generated by {fi} in the Hilbert space f ∈ L2(Ω, μ0). (2) The integral distance between f and f0 on the sets {Ai} is small.

Suggested Citation

Handle: RePEc:wly:jnlaaa:v:5:y:2000:i:4:p:207-226
DOI: 10.1155/S1085337501000227
as

Download full text from publisher

File URL: https://doi.org/10.1155/S1085337501000227
Download Restriction: no

File URL: https://libkey.io/10.1155/S1085337501000227?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jnlaaa:v:5:y:2000:i:4:p:207-226. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1155/4058 .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.