IDEAS home Printed from https://ideas.repec.org/a/wly/jnlaaa/v3y1998i3-4p425-436.html
   My bibliography  Save this article

Almost periodic mild solutions of a class of partial functional differential equations

Author

Listed:
  • Bernd Aulbach
  • Nguyen Van Minh

Abstract

We study the existence of almost periodic mild solutions of a class of partial functional differential equations via semilinear almost periodic abstract functional differential equations of the form (*) x′=f(t,x,xt). To this end, we first associate with every almost periodic semilinear equation (**) x′=F(t,x). a nonlinear semigroup in the space of almost periodic functions. We then give sufficient conditions (in terms of the accretiveness of the generator of this semigroup) for the existence of almost periodic mild solutions of (**) as fixed points of the semigroup. Those results are then carried over to equation (*). The main results are stated under accretiveness conditions of the function f in terms of x and Lipschitz conditions with respect to xt.

Suggested Citation

  • Bernd Aulbach & Nguyen Van Minh, 1998. "Almost periodic mild solutions of a class of partial functional differential equations," Abstract and Applied Analysis, John Wiley & Sons, vol. 3(3-4), pages 425-436.
  • Handle: RePEc:wly:jnlaaa:v:3:y:1998:i:3-4:p:425-436
    DOI: 10.1155/S1085337598000645
    as

    Download full text from publisher

    File URL: https://doi.org/10.1155/S1085337598000645
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1085337598000645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jnlaaa:v:3:y:1998:i:3-4:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1155/4058 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.