IDEAS home Printed from https://ideas.repec.org/a/wly/jnlaaa/v2y1997i1-2p97-120.html
   My bibliography  Save this article

A proximal point method for nonsmooth convex optimization problems in Banach spaces

Author

Listed:
  • Y. I. Alber
  • R. S. Burachik
  • A. N. Iusem

Abstract

In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the dual Banach space, namely its modulus of convexity. We apply a new technique which includes Banach space geometry, estimates of duality mappings, nonstandard Lyapunov functionals and generalized projection operators in Banach spaces.

Suggested Citation

Handle: RePEc:wly:jnlaaa:v:2:y:1997:i:1-2:p:97-120
DOI: 10.1155/S1085337597000298
as

Download full text from publisher

File URL: https://doi.org/10.1155/S1085337597000298
Download Restriction: no

File URL: https://libkey.io/10.1155/S1085337597000298?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jnlaaa:v:2:y:1997:i:1-2:p:97-120. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1155/4058 .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.