IDEAS home Printed from https://ideas.repec.org/a/wly/jnlaaa/v2013y2013i1n865952.html
   My bibliography  Save this article

Computational Solution of a Fractional Integro‐Differential Equation

Author

Listed:
  • Muhammet Kurulay
  • Mehmet Ali Akinlar
  • Ranis Ibragimov

Abstract

Although differential transform method (DTM) is a highly efficient technique in the approximate analytical solutions of fractional differential equations, applicability of this method to the system of fractional integro‐differential equations in higher dimensions has not been studied in detail in the literature. The major goal of this paper is to investigate the applicability of this method to the system of two‐dimensional fractional integral equations, in particular to the two‐dimensional fractional integro‐Volterra equations. We deal with two different types of systems of fractional integral equations having some initial conditions. Computational results indicate that the results obtained by DTM are quite close to the exact solutions, which proves the power of DTM in the solutions of these sorts of systems of fractional integral equations.

Suggested Citation

Handle: RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:865952
DOI: 10.1155/2013/865952
as

Download full text from publisher

File URL: https://doi.org/10.1155/2013/865952
Download Restriction: no

File URL: https://libkey.io/10.1155/2013/865952?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:865952. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1155/4058 .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.