IDEAS home Printed from https://ideas.repec.org/a/wly/jnlaaa/v2013y2013i1n108026.html
   My bibliography  Save this article

Nonlinear Hydroelastic Waves beneath a Floating Ice Sheet in a Fluid of Finite Depth

Author

Listed:
  • Ping Wang
  • Zunshui Cheng

Abstract

The nonlinear hydroelastic waves propagating beneath an infinite ice sheet floating on an inviscid fluid of finite depth are investigated analytically. The approximate series solutions for the velocity potential and the wave surface elevation are derived, respectively, by an analytic approximation technique named homotopy analysis method (HAM) and are presented for the second‐order components. Also, homotopy squared residual technique is employed to guarantee the convergence of the series solutions. The present formulas, different from the perturbation solutions, are highly accurate and uniformly valid without assuming that these nonlinear partial differential equations (PDEs) have small parameters necessarily. It is noted that the effects of water depth, the ice sheet thickness, and Young’s modulus are analytically expressed in detail. We find that, in different water depths, the hydroelastic waves traveling beneath the thickest ice sheet always contain the largest wave energy. While with an increasing thickness of the sheet, the wave elevation tends to be smoothened at the crest and be sharpened at the trough. The larger Young’s modulus of the sheet also causes analogous effects. The results obtained show that the thickness and Young’s modulus of the floating ice sheet all greatly affect the wave energy and wave profile in different water depths.

Suggested Citation

Handle: RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:108026
DOI: 10.1155/2013/108026
as

Download full text from publisher

File URL: https://doi.org/10.1155/2013/108026
Download Restriction: no

File URL: https://libkey.io/10.1155/2013/108026?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jnlaaa:v:2013:y:2013:i:1:n:108026. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1155/4058 .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.