IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v40y2020i12p1861-1879.html
   My bibliography  Save this article

Bitcoin and sentiment

Author

Listed:
  • Hoje Jo
  • Haehean Park
  • Hersh Shefrin

Abstract

Baker and Wurgler identify high sentiment betas with small startup firms that have great growth potential. On the surface, cryptocurrencies share important features in common with high sentiment beta stocks. This paper investigates the degree to which, during the period July 18, 2010–February 26, 2018, the return to bitcoin displayed the characteristics of a high sentiment beta stock. Using a sentiment‐dependent factor model, the analysis indicates that in large measure, bitcoin returns resembled returns to high sentiment beta stocks. Additionally, we show that bitcoin's expected returns are low when sentiment measured by Volatility Index is high while expected returns are high when sentiment is low.

Suggested Citation

  • Hoje Jo & Haehean Park & Hersh Shefrin, 2020. "Bitcoin and sentiment," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1861-1879, December.
  • Handle: RePEc:wly:jfutmk:v:40:y:2020:i:12:p:1861-1879
    DOI: 10.1002/fut.22156
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22156
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kurz, Mordecai, 1974. "Equilibrium in a Finite Sequence of Markets with Transaction Cost," Econometrica, Econometric Society, vol. 42(1), pages 1-20, January.
    2. John Y. Campbell & Robert J. Shiller, 1988. "Stock Prices, Earnings and Expected Dividends," Cowles Foundation Discussion Papers 858, Cowles Foundation for Research in Economics, Yale University.
    3. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    4. Yhlas Sovbetov, 2018. "Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 1-27.
    5. Starr, Ross M., 2003. "Monetary general equilibrium with transaction costs," Journal of Mathematical Economics, Elsevier, vol. 39(3-4), pages 335-354, June.
    6. Hahn, F H, 1971. "Equilibrium with Transaction Costs," Econometrica, Econometric Society, vol. 39(3), pages 417-439, May.
    7. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    8. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    10. Foley, Duncan K., 1970. "Economic equilibrium with costly marketing," Journal of Economic Theory, Elsevier, vol. 2(3), pages 276-291, September.
    11. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    12. Guych Nuryyev & Yu-Ping Wang & Jennet Achyldurdyyeva & Bih-Shiaw Jaw & Yi-Shien Yeh & Hsien-Tang Lin & Li-Fan Wu, 2020. "Blockchain Technology Adoption Behavior and Sustainability of the Business in Tourism and Hospitality SMEs: An Empirical Study," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    13. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    14. Shefrin, Hersh, 2008. "A Behavioral Approach to Asset Pricing," Elsevier Monographs, Elsevier, edition 2, number 9780123743565.
    15. Brad M. Barber & Terrance Odean, 2001. "The Internet and the Investor," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 41-54, Winter.
    16. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    17. Lin William Cong & Ye Li & Neng Wang, 2021. "Tokenomics: Dynamic Adoption and Valuation [The demand of liquid assets with uncertain lumpy expenditures]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1105-1155.
    18. Brad M. Barber & Terrance Odean, 2001. "Boys will be Boys: Gender, Overconfidence, and Common Stock Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 261-292.
    19. Christian Catalini & Joshua S. Gans, 2018. "Initial Coin Offerings and the Value of Crypto Tokens," NBER Working Papers 24418, National Bureau of Economic Research, Inc.
    20. Athey, Susan & Parashkevov, Ivo & Sarukkai, Vishnu & Xia, Jing, 2016. "Bitcoin Pricing, Adoption, and Usage: Theory and Evidence," Research Papers 3469, Stanford University, Graduate School of Business.
    21. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    22. Eugene F. Fama, 2014. "Two Pillars of Asset Pricing," American Economic Review, American Economic Association, vol. 104(6), pages 1467-1485, June.
    23. H. M. Shefrin, 1981. "Transaction Costs, Uncertainty and Generally Inactive Futures Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 48(1), pages 131-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimeng Shi, 2022. "Bitcoin futures risk premia," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2190-2217, December.
    2. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    3. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    2. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    3. Choi, Paul Moon Sub & Choi, Joung Hwa, 2018. "Is individual trading priced in stocks?," Journal of International Money and Finance, Elsevier, vol. 85(C), pages 76-92.
    4. Liebi, Luca J., 2022. "Is there a value premium in cryptoasset markets?," Economic Modelling, Elsevier, vol. 109(C).
    5. Liu, Weiyi & Liang, Xuan & Cui, Guowei, 2020. "Common risk factors in the returns on cryptocurrencies," Economic Modelling, Elsevier, vol. 86(C), pages 299-305.
    6. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    7. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    8. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    9. David C. Ling & Andy Naranjo & Benjamin Scheick, 2014. "Investor Sentiment, Limits to Arbitrage and Private Market Returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(3), pages 531-577, September.
    10. Lutzenberger, Fabian T., 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, Elsevier, vol. 23(3), pages 120-130.
    11. Fabian T. Lutzenberger, 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, John Wiley & Sons, vol. 23(3), pages 120-130, September.
    12. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    13. Cakici, Nusret & Zaremba, Adam, 2023. "Recency bias and the cross-section of international stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    14. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    15. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    16. Ince, Baris, 2022. "Liquidity components: Commonality in liquidity, underreaction, and equity returns," Journal of Financial Markets, Elsevier, vol. 60(C).
    17. Cohen, Lauren & Lou, Dong, 2012. "Complicated firms," Journal of Financial Economics, Elsevier, vol. 104(2), pages 383-400.
    18. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    19. Ajay Bhootra & Jungshik Hur, 2015. "High Idiosyncratic Volatility and Low Returns: A Prospect Theory Explanation," Financial Management, Financial Management Association International, vol. 44(2), pages 295-322, June.
    20. Doron Avramov & Si Cheng & Allaudeen Hameed, 2020. "Mutual Funds and Mispriced Stocks," Management Science, INFORMS, vol. 66(6), pages 2372-2395, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:40:y:2020:i:12:p:1861-1879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.