IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v27y2007i8p771-790.html
   My bibliography  Save this article

Canonical valuation and hedging of index options

Author

Listed:
  • Philip Gray
  • Shane Edwards
  • Egon Kalotay

Abstract

Canonical valuation is a nonparametric method for valuing derivatives proposed by M. Stutzer (1996). Although the properties of canonical estimates of option price and hedge ratio have been studied in simulation settings, applications of the methodology to traded derivative data are rare. This study explores the practical usefulness of canonical valuation using a large sample of index options. The basic unconstrained canonical estimator fails to outperform the traditional Black–Scholes model; however, a constrained canonical estimator that incorporates a small amount of conditioning information produces dramatic reductions in mean pricing errors. Similarly, the canonical approach generates hedge ratios that result in superior hedging effectiveness compared to Black–Scholes‐based deltas. The results encourage further exploration and application of the canonical approach to pricing and hedging derivatives. © 2007 Wiley Periodicals, Inc. Jnl Fut Mark 27: 771–790, 2007

Suggested Citation

  • Philip Gray & Shane Edwards & Egon Kalotay, 2007. "Canonical valuation and hedging of index options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(8), pages 771-790, August.
  • Handle: RePEc:wly:jfutmk:v:27:y:2007:i:8:p:771-790
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    2. Yu, Xisheng & Xie, Xiaoke, 2015. "Pricing American options: RNMs-constrained entropic least-squares approach," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 155-173.
    3. Jamie Alcock & Godfrey Smith, 2017. "Non-parametric American option valuation using Cressie–Read divergences," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 252-275, May.
    4. Yu, Xisheng, 2021. "A unified entropic pricing framework of option: Using Cressie-Read family of divergences," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:27:y:2007:i:8:p:771-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.