IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i8p2197-2216.html
   My bibliography  Save this article

Regularized Poisson regressions predict regional innovation output

Author

Listed:
  • Li Xiang
  • Hu Xuemei
  • Yang Junwen

Abstract

Regional innovation output is influenced by many factors such as macroeconomic environments, residents consumption, fixed asset investment, foreign trade, fiscal revenue and expenditure, education, and research and development (R&D) input. Correctly predicting regional innovation output is an important subject in the economic field. In this paper, we propose four regularized Poisson regressions to forecast regional innovation output for 31 provinces in China. Firstly, we screen out 20 important factors and combine with four penalties: ridge penalty (L2), least absolute shrinkage and selection operator penalty (LASSO), smoothly clipped absolute deviation penalty (SCAD), and minimax concave penalty (MCP) to construct four regularized Poisson regressions. Secondly, we introduce the cyclic coordinate descent (CCD) algorithm and the training set to complete variable selection and obtain the least squares weighted iterative estimators and make model selection by introducing three criterions to compare goodness of fit to different models. Finally, we apply the testing set and the learned regressions to exhibit the prediction performances and found that SCAD/MCP regularized Poisson regression predicts better than L2/LASSO regularized Poisson regression in terms of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). In particular, MCP regularized Poisson regression outperforms the other three regularized Poisson regressions in predicting the number of granted patents in the three regions.

Suggested Citation

  • Li Xiang & Hu Xuemei & Yang Junwen, 2023. "Regularized Poisson regressions predict regional innovation output," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2197-2216, December.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2197-2216
    DOI: 10.1002/for.3012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3012
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Skuras, Dimitris & Tsegenidi, Kyriaki & Tsekouras, Kostas, 2008. "Product innovation and the decision to invest in fixed capital assets: Evidence from an SME survey in six European Union member states," Research Policy, Elsevier, vol. 37(10), pages 1778-1789, December.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    3. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.
    4. Daron Acemoglu & Joshua Linn, 2004. "Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 1049-1090.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Michael Fritsch & Viktor Slavtchev, 2011. "Determinants of the Efficiency of Regional Innovation Systems," Regional Studies, Taylor & Francis Journals, vol. 45(7), pages 905-918.
    7. Jianqing Fan, 1997. "Comments on «Wavelets in statistics: A review» by A. Antoniadis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 131-138, August.
    8. Wei Chi & Xiaoye Qian, 2010. "The role of education in regional innovation activities: spatial evidence from China," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 15(4), pages 396-419.
    9. Li, Xibao, 2009. "China's regional innovation capacity in transition: An empirical approach," Research Policy, Elsevier, vol. 38(2), pages 338-357, March.
    10. Yongda Yu & Junbo Yu & Xinglin Pan & Roger Stough, 2017. "Governance and the China innovation economy," Asia-Pacific Journal of Regional Science, Springer, vol. 1(1), pages 63-84, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    4. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    5. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    6. Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
    7. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    8. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    9. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    11. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    12. Jin-Chuan Duan & Weimin Miao, 2016. "Default Correlations and Large-Portfolio Credit Analysis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 536-546, October.
    13. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    14. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    15. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    16. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    17. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    18. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    19. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:8:p:2197-2216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.