IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i7p1930-1949.html
   My bibliography  Save this article

Forecasting nonstationary time series

Author

Listed:
  • Lukasz T. Gatarek
  • Aleksander Welfe

Abstract

Many variables show a tendency to increase over time in line with their nonstationary nature. It is notable, however, that the original time series can be transformed into a sequence of jumps measured by time distances between the successive maxima and present the resulting series as the compound Poisson process, which has powerful consequences discussed in the paper. Firstly, the jump‐generating process is stationary, unlike the one generating the original data. Secondly, the dynamics of a variable can be determined using solely the properties of the derived stationary counterpart. Thirdly, using this framework for prediction offers substantial advantages. The proposed methodology allows forecasting the number of periods necessary for a process to achieve the desired level and decomposing the path leading to that level into jumps of different size. It also gives a unique insight into the shape of the trajectory over the prediction horizon, which the traditional approach to the forecasting of nonstationary time series is incapable of providing.

Suggested Citation

  • Lukasz T. Gatarek & Aleksander Welfe, 2023. "Forecasting nonstationary time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1930-1949, November.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1930-1949
    DOI: 10.1002/for.2998
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2998
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    2. Bhattacharya, Prasad S. & Thomakos, Dimitrios D., 2008. "Forecasting industry-level CPI and PPI inflation: Does exchange rate pass-through matter?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 134-150.
    3. Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015. "The information content of money and credit for US activity," Working Paper Series 1803, European Central Bank.
    4. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    5. Wolfgang Polasek, 2013. "Forecast Evaluations for Multiple Time Series: A Generalized Theil Decomposition," Working Paper series 23_13, Rimini Centre for Economic Analysis.
    6. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    7. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    8. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    9. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    10. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    11. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    12. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    13. Ronald Bewley & Minxian Yang, 2006. "A hybrid forecasting approach for piece-wise stationary time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 513-527.
    14. Giancarlo Lutero & Marco Marini, 2010. "Direct vs Indirect Forecasts of Foreign Trade Unit Value Indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 12(2-3), pages 73-96, October.
    15. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    16. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    17. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    18. Muellbauer, John & Aron, Janine & Sebudde, Rachel, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CEPR Discussion Papers 10739, C.E.P.R. Discussion Papers.
    19. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    20. Nicholas Apergis & Ghassen El Montasser & Emmanuel Owusu-Sekyere & Ahdi N. Ajmi & Rangan Gupta, 2014. "Dutch Disease Effect of Oil Rents on Agriculture Value Added in MENA Countries," Working Papers 201408, University of Pretoria, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1930-1949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.