IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i1p51-59.html
   My bibliography  Save this article

Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH‐MIDAS and deep learning models

Author

Listed:
  • Yuping Song
  • Xiaolong Tang
  • Hemin Wang
  • Zhiren Ma

Abstract

Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low‐frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low‐frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH‐MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH‐MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short‐term volatility and finally takes the predicted short‐term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.

Suggested Citation

  • Yuping Song & Xiaolong Tang & Hemin Wang & Zhiren Ma, 2023. "Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH‐MIDAS and deep learning models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 51-59, January.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:1:p:51-59
    DOI: 10.1002/for.2899
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2899
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balli, Faruk & Hajhoj, Hassan Rafdan & Basher, Syed Abul & Ghassan, Hassan Belkacem, 2015. "An analysis of returns and volatility spillovers and their determinants in emerging Asian and Middle Eastern countries," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 311-325.
    2. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    3. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    4. Alaali, Fatema, 2020. "The effect of oil and stock price volatility on firm level investment: The case of UK firms," Energy Economics, Elsevier, vol. 87(C).
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Sahiner, 2024. "Volatility Spillovers and Contagion During Major Crises: An Early Warning Approach Based on a Deep Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2435-2499, June.
    2. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    4. Zeng, Qing & Tang, Yusui & Yang, Hua & Zhang, Xi, 2024. "Stock market volatility and economic policy uncertainty: New insight into a dynamic threshold mixed-frequency model," Finance Research Letters, Elsevier, vol. 59(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Andreasen, 2012. "On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 295-316, July.
    2. Seema REHMAN & Saqib SHARIF & Wali ULLAH, 2021. "Higher Realized Moments and Stock Return Predictability," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 48-70, December.
    3. Jun Ma, 2013. "Long‐Run Risk and Its Implications for the Equity Premium Puzzle: New Evidence from a Multivariate Framework," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(1), pages 121-145, February.
    4. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    5. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    6. Jules van Binsbergen & Michael Brandt & Ralph Koijen, 2012. "On the Timing and Pricing of Dividends," American Economic Review, American Economic Association, vol. 102(4), pages 1596-1618, June.
    7. Yuping Song & Bolin Lei & Xiaolong Tang & Chen Li, 2024. "Volatility forecasting for stock market index based on complex network and hybrid deep learning model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 544-566, April.
    8. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    9. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    10. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    11. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    12. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    13. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    14. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    15. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    16. repec:hal:wpspec:info:hdl:2441/eo6779thqgm5r489m363974qg is not listed on IDEAS
    17. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    18. Beeler, Jason & Campbell, John Y., 2012. "The Long-Run Risks Model and Aggregate Asset Prices: An Empirical Assessment," Critical Finance Review, now publishers, vol. 1(1), pages 141-182, January.
    19. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    20. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    21. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    22. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:1:p:51-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.