IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i6p1087-1098.html
   My bibliography  Save this article

Parallel architecture of CNN‐bidirectional LSTMs for implied volatility forecast

Author

Listed:
  • Ji‐Eun Choi
  • Dong Wan Shin

Abstract

We propose a new forecast method based on artificial neural networks (ANNs), ensemble CNN‐BiLSTM, which is an ensemble of three CNN‐BiLSTMs constructed with the combination of Convolution Neural Network (CNN) and Bidirectional Long Short‐Term Memory (BiLSTM). The new forecast method effectively handles the strong long memory serial dependence feature of the daily VXN by the ensemble CNN‐BiLSTM together with proper normalization and batch size. The long memory features arising from time‐dependent mean and variance are largely reduced by normalizing the data with local mean and local standard deviation (SD). The batch size is determined by the optimal block length of the moving block bootstrap which reflects the long memory. The ensemble CNN‐BiLSTM concentrates on 1‐day, 1‐week, and 2‐week features of the normalized VXN data. An out‐of‐sample forecast comparison reveals that (i) the proposed ensemble CNN‐BiLSTM has better forecast performance than the autoregressive model, DNN, LSTM, BiLSTM, and individual CNN‐BiLSTMs; (ii) the local mean‐SD normalization has superior forecast performance to the standard global mean‐SD normalization; (iii) and the optimal block length improves the forecast performance over a batch size considered in the literature.

Suggested Citation

  • Ji‐Eun Choi & Dong Wan Shin, 2022. "Parallel architecture of CNN‐bidirectional LSTMs for implied volatility forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1087-1098, September.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:6:p:1087-1098
    DOI: 10.1002/for.2844
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2844
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    2. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    3. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    4. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2016. "Forecasting Stock Return Volatility: A Comparison of GARCH, Implied Volatility, and Realized Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1127-1163, December.
    5. ShuiLing Yu & Zhe Li, 2018. "Forecasting Stock Price Index Volatility with LSTM Deep Neural Network," Springer Proceedings in Business and Economics, in: Madjid Tavana & Srikanta Patnaik (ed.), Recent Developments in Data Science and Business Analytics, chapter 0, pages 265-272, Springer.
    6. Apostolos Kourtis & Raphael N. Markellos & Lazaros Symeonidis, 2016. "An International Comparison of Implied, Realized, and GARCH Volatility Forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1164-1193, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Liu & Sandra Paterlini, 2023. "Stock Price Prediction Using Temporal Graph Model with Value Chain Data," Papers 2303.09406, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    2. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    4. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    5. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    6. Ruipeng Liu & Riza Demirer & Rangan Gupta & Mark E. Wohar, 2017. "Do Bivariate Multifractal Models Improve Volatility Forecasting in Financial Time Series? An Application to Foreign Exchange and Stock Markets," Working Papers 201728, University of Pretoria, Department of Economics.
    7. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    8. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    9. Panagiotis Delis & Stavros Degiannakis & Konstantinos Giannopoulos, 2023. "What Should be Taken into Consideration when Forecasting Oil Implied Volatility Index?," The Energy Journal, , vol. 44(5), pages 231-250, September.
    10. Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2023. "A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    11. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    12. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    13. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    14. Trung H. Le & Apostolos Kourtis & Raphael Markellos, 2023. "Modeling skewness in portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 734-770, June.
    15. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
    16. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    17. Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
    18. Fan, Lina & Yang, Hao & Zhai, Jia & Zhang, Xiaotao, 2023. "Forecasting stock volatility during the stock market crash period: The role of Hawkes process," Finance Research Letters, Elsevier, vol. 55(PA).
    19. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    20. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:6:p:1087-1098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.