Gaussian processes for daily demand prediction in tourism planning
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2644
Download full text from publisher
References listed on IDEAS
- Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
- Anna Maria Fiori & Ilaria Foroni, 2019. "Reservation Forecasting Models for Hospitality SMEs with a View to Enhance Their Economic Sustainability," Sustainability, MDPI, vol. 11(5), pages 1-24, February.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011.
"Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
- Jae H. Kim & Haiyang Song & Kevin Wong & George Athanasopoulos & Shen Liu, 2008. "Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals," Monash Econometrics and Business Statistics Working Papers 11/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- William Veloce, 2004. "Forecasting Inbound Canadian Tourism: An Evaluation of Error Corrections Model Forecasts," Tourism Economics, , vol. 10(3), pages 263-280, September.
- Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Combination forecasts of tourism demand with machine learning models," Applied Economics Letters, Taylor & Francis Journals, vol. 23(6), pages 428-431, April.
- Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
- Vivek F. Farias & Andrew A. L, 2019. "Learning Preferences with Side Information," Management Science, INFORMS, vol. 65(7), pages 3131-3149, July.
- Maria M. De Mello & Natércia Fortuna, 2005. "Testing Alternative Dynamic Systems for Modelling Tourism Demand," CEF.UP Working Papers 0501, Universidade do Porto, Faculdade de Economia do Porto.
- Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
- Malasevska, Iveta & Haugom, Erik, 2018. "Optimal prices for alpine ski passes," Tourism Management, Elsevier, vol. 64(C), pages 291-302.
- Daria Dzyabura & Srikanth Jagabathula & Eitan Muller, 2019. "Accounting for Discrepancies Between Online and Offline Product Evaluations," Marketing Science, INFORMS, vol. 38(1), pages 88-106, January.
- Maria M. De Mello & Natércia Fortuna, 2005. "Testing Alternative Dynamic Systems for Modelling Tourism Demand," Tourism Economics, , vol. 11(4), pages 517-537, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jessica Bollenbach & Stefan Neubig & Andreas Hein & Robert Keller & Helmut Krcmar, 2024. "Enabling active visitor management: local, short-term occupancy prediction at a touristic point of interest," Information Technology & Tourism, Springer, vol. 26(3), pages 521-552, September.
- Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Ogechi Adeola & Nathaniel Boso & Olaniyi Evans, 2018. "Drivers of international tourism demand in Africa," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 53(1), pages 25-36, January.
- Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
- Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
- Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Saayman, Andrea & Viljoen, Armand & Saayman, Melville, 2018. "Africa’s outbound tourism: An Almost Ideal Demand System perspective," Annals of Tourism Research, Elsevier, vol. 73(C), pages 141-158.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
- Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
- Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
- Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
- Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018.
"“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”,"
AQR Working Papers
201802, University of Barcelona, Regional Quantitative Analysis Group, revised Apr 2018.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," IREA Working Papers 201805, University of Barcelona, Research Institute of Applied Economics, revised Mar 2018.
- Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
- Muzi Zhang & Junyi Li & Bing Pan & Gaojun Zhang, 2018. "Weekly Hotel Occupancy Forecasting of a Tourism Destination," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
- İhsan Erdem Kayral & Tuğba Sarı & Nisa Şansel Tandoğan Aktepe, 2023. "Forecasting the Tourist Arrival Volumes and Tourism Income with Combined ANN Architecture in the Post COVID-19 Period: The Case of Turkey," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:551-568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.