IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v33y2014i4p259-269.html
   My bibliography  Save this article

Estimating and Forecasting APARCH‐Skew‐t Model by Wavelet Support Vector Machines

Author

Listed:
  • Yushu Li

Abstract

ABSTRACTThis paper concentrates on comparing estimation and forecasting ability of quasi‐maximum likelihood (QML) and support vector machines (SVM) for financial data. The financial series are fitted into a family of asymmetric power ARCH (APARCH) models. As the skewness and kurtosis are common characteristics of the financial series, a skew‐t distributed innovation is assumed to model the fat tail and asymmetry. Prior research indicates that the QML estimator for the APARCH model is inefficient when the data distribution shows departure from normality, so the current paper utilizes the semi‐parametric‐based SVM method and shows that it is more efficient than the QML under the skewed Student's‐t distributed error. As the SVM is a kernel‐based technique, we further investigate its performance by applying separately a Gaussian kernel and a wavelet kernel. The results suggest that the SVM‐based method generally performs better than QML for both in‐sample and out‐of‐sample data. The outcomes also highlight the fact that the wavelet kernel outperforms the Gaussian kernel with lower forecasting error, better generation capability and more computation efficiency. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Yushu Li, 2014. "Estimating and Forecasting APARCH‐Skew‐t Model by Wavelet Support Vector Machines," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 259-269, July.
  • Handle: RePEc:wly:jforec:v:33:y:2014:i:4:p:259-269
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
    2. Kim Karlsson, Hyunjoo & Li, Yushu, 2024. "Investigation of Swedish krona exchange rate volatility by APARCH-Support Vector Regression," Working Papers in Economics and Statistics 10/2024, Linnaeus University, School of Business and Economics, Department of Economics and Statistics.
    3. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
    4. Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
    5. Jun Lu & Shao Yi, 2022. "Reducing overestimating and underestimating volatility via the augmented blending-ARCH model," Papers 2203.12456, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:33:y:2014:i:4:p:259-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.