IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i2p359-378.html
   My bibliography  Save this article

Spotting the Danger Zone: Forecasting Financial Crises With Classification Tree Ensembles and Many Predictors

Author

Listed:
  • Felix Ward

Abstract

This paper introduces classification tree ensembles (CTEs) to the banking crisis forecasting literature. I show that CTEs substantially improve out‐of‐sample forecasting performance over best‐practice early‐warning systems. CTEs enable policymakers to correctly forecast 80% of crises with a 20% probability of incorrectly forecasting a crisis. These findings are based on a long‐run sample (1870–2011), and two broad post‐1970 samples which together cover almost all known systemic banking crises. I show that the marked improvement in forecasting performance results from the combination of many classification trees into an ensemble, and the use of many predictors. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Felix Ward, 2017. "Spotting the Danger Zone: Forecasting Financial Crises With Classification Tree Ensembles and Many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 359-378, March.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:2:p:359-378
    DOI: 10.1002/jae.2525
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2525
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Schularick & Lucas ter Steege & Felix Ward, 2021. "Leaning against the Wind and Crisis Risk," American Economic Review: Insights, American Economic Association, vol. 3(2), pages 199-214, June.
    2. Nina Boyarchenko & Giovanni Favara & Moritz Schularick, 2022. "Financial Stability Considerations for Monetary Policy: Empirical Evidence and Challenges," Staff Reports 1003, Federal Reserve Bank of New York.
    3. du Plessis, Emile & Fritsche, Ulrich, 2022. "New forecasting methods for an old problem: Predicting 147 years of systemic financial crises," WiSo-HH Working Paper Series 67, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    4. Fernandez-Gallardo, Alvaro, 2023. "Preventing financial disasters: Macroprudential policy and financial crises," European Economic Review, Elsevier, vol. 151(C).
    5. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    6. Maximilian Gobel & Tanya Araújo, 2020. "Indicators of Economic Crises: A Data-Driven Clustering Approach," Working Papers REM 2020/0128, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    7. Alexandr Patalaha & Maria A. Shchepeleva, 2023. "Bank Crisis Management Policies and the New Instability," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 43-60, December.
    8. Ristolainen, Kim & Roukka, Tomi & Nyberg, Henri, 2024. "A thousand words tell more than just numbers: Financial crises and historical headlines," Journal of Financial Stability, Elsevier, vol. 70(C).
    9. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    10. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    11. Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "Measuring financial soundness around the world: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 85(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:2:p:359-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.