IDEAS home Printed from https://ideas.repec.org/a/wly/intnem/v27y2017i5ne1972.html
   My bibliography  Save this article

Power‐efficient routing for SDN with discrete link rates and size‐limited flow tables: A tree‐based particle swarm optimization approach

Author

Listed:
  • Mohamad Khattar Awad
  • Mohammed El‐Shafei
  • Tassos Dimitriou
  • Yousef Rafique
  • Mohammed Baidas
  • Ammar Alhusaini

Abstract

Software‐defined networking is a promising networking paradigm for achieving programmability and centralized control in communication networks. These features simplify network management and enable innovation in network applications and services such as routing, virtual machine migration, load balancing, security, access control, and traffic engineering. The routing application can be optimized for power efficiency by routing flows and coalescing them such that the least number of links is activated with the lowest link rates. However, in practice, flow coalescing can generally overflow the flow tables, which are implemented in a size‐limited and power‐hungry ternary content addressable memory (TCAM). In this paper, a set of practical constraints is imposed to the software‐defined networking routing problem, namely, size‐limited flow table and discrete link rate constraints, to ensure applicability in real networks. Because the problem is NP‐hard and difficult to approximate, a low‐complexity particle swarm optimization–based and power‐efficient routing (PSOPR) heuristic is proposed. Performance evaluation results revealed that PSOPR achieves more than 90% of the optimal network power consumption while requiring only 0.0045% to 0.9% of the optimal computation time in real‐network topologies. In addition, PSOPR generates shorter routes than the optimal routes generated by CPLEX.

Suggested Citation

  • Mohamad Khattar Awad & Mohammed El‐Shafei & Tassos Dimitriou & Yousef Rafique & Mohammed Baidas & Ammar Alhusaini, 2017. "Power‐efficient routing for SDN with discrete link rates and size‐limited flow tables: A tree‐based particle swarm optimization approach," International Journal of Network Management, John Wiley & Sons, vol. 27(5), September.
  • Handle: RePEc:wly:intnem:v:27:y:2017:i:5:n:e1972
    DOI: 10.1002/nem.1972
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nem.1972
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nem.1972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    2. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    3. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    4. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    5. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    6. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    7. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    9. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    10. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    11. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    13. T. Gomes & J. Craveirinha & L. Jorge, 2010. "An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 394-414, April.
    14. Zhou, Bo & Eskandarian, Azim, 2006. "A Non-Deterministic Path Generation Algorithm for Traffic Networks," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208047, Transportation Research Forum.
    15. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    16. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    17. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    18. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    19. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    20. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:27:y:2017:i:5:n:e1972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.