IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v29y2024i2p1762-1780.html
   My bibliography  Save this article

Demographic efficiency drivers in the Chinese energy production chain: A hybrid neural multi‐activity network data envelopment analysis

Author

Listed:
  • Yue Zhao
  • Jorge Antunes
  • Yong Tan
  • Peter Wanke

Abstract

For meeting the external requirements of the Paris Agreement and reducing energy consumption per gross domestic product, China needs to improve its energy efficiency. Although the existing studies have attempted to investigate energy efficiency from different perspectives, little effort has yet been made to consider the collaboration among different stages in the production chain to produce energy outputs. In addition, various studies have also examined the determinants of energy efficiency, however, they mainly focused on technology and economic factors, no study has yet proposed and considered the influence of geographical factors on energy efficiency. In this article, we fill in the gap and make theoretical and empirical contributions to the literature. In this study, a two‐stage analysis method is used to analyse energy efficiency and the influencing factors in China between 2009 and 2021. More specifically, from the theoretical/methodological perspective, a multi‐activity network data envelopment analysis model is used to measure energy efficiency of different processes in the energy production chain. From the empirical perspective, we attempt to investigate the influence of geographical factors on energy efficiency through a neural network analysis. Meanwhile, the comparisons among different provinces are made. The result shows that the overall energy efficiency is low in China, and China relies more on the traditional energy industry than the clean energy industry. The efficiency level experiences a level of volatility over the examined period. Finally, we find that raw fuel pre‐process and industry have a significant and positive impact on energy efficiency in China.

Suggested Citation

  • Yue Zhao & Jorge Antunes & Yong Tan & Peter Wanke, 2024. "Demographic efficiency drivers in the Chinese energy production chain: A hybrid neural multi‐activity network data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1762-1780, April.
  • Handle: RePEc:wly:ijfiec:v:29:y:2024:i:2:p:1762-1780
    DOI: 10.1002/ijfe.2765
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2765
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi, Xiaoyan & Guo, Pibin & Guo, Yanshan & Liu, Xiuli & Zhou, Xijun, 2020. "Understanding energy efficiency and its drivers: An empirical analysis of China’s 14 coal intensive industries," Energy, Elsevier, vol. 190(C).
    2. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    3. Moon, Hana & Min, Daiki, 2017. "Assessing energy efficiency and the related policy implications for energy-intensive firms in Korea: DEA approach," Energy, Elsevier, vol. 133(C), pages 23-34.
    4. Jun-liang Du & Yong Liu & Wei-xue Diao, 2019. "Assessing Regional Differences in Green Innovation Efficiency of Industrial Enterprises in China," IJERPH, MDPI, vol. 16(6), pages 1-23, March.
    5. Yong Tan & Peter Wanke & Jorge Antunes & Ali Emrouznejad, 2021. "Unveiling endogeneity between competition and efficiency in Chinese banks: a two-stage network DEA and regression analysis," Annals of Operations Research, Springer, vol. 306(1), pages 131-171, November.
    6. Goto, Mika & Otsuka, Akihiro & Sueyoshi, Toshiyuki, 2014. "DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries," Energy, Elsevier, vol. 66(C), pages 535-549.
    7. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    8. Tsai, P. F. & Mar Molinero, C., 2002. "A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service," European Journal of Operational Research, Elsevier, vol. 141(1), pages 21-38, August.
    9. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
    10. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    11. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
    12. Yu, Ming-Miin & Chen, Li-Hsueh & Hsiao, Bo, 2016. "Dynamic performance assessment of bus transit with the multi-activity network structure," Omega, Elsevier, vol. 60(C), pages 15-25.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    2. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    3. Zhang, Caiqing & Chen, Panyu, 2022. "Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries," Energy, Elsevier, vol. 241(C).
    4. Wang, Lianghu & Shao, Jun & Ma, Yatian, 2023. "Does China's low-carbon city pilot policy improve energy efficiency?," Energy, Elsevier, vol. 283(C).
    5. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    6. Song, Yang & Zhang, Zhiyuan & Sahut, Jean-Michel & Rubin, Ofir, 2023. "Incentivizing green technology innovation to confront sustainable development," Technovation, Elsevier, vol. 126(C).
    7. Yaliu Yang & Yuan Wang & Cui Wang & Yingyan Zhang & Cuixia Zhang, 2022. "Temporal and Spatial Evolution of the Science and Technology Innovative Efficiency of Regional Industrial Enterprises: A Data-Driven Perspective," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    8. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    9. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    10. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    11. Xu, Mengmeng & Tan, Ruipeng & He, Xinju, 2022. "How does economic agglomeration affect energy efficiency in China?: Evidence from endogenous stochastic frontier approach," Energy Economics, Elsevier, vol. 108(C).
    12. Alexandre Rodrigues da Silva & Claudia Brito Silva Cirani & Fernando Antonio Ribeiro Serra & Angélica Pigola & Priscila Rezende da Costa & Isabel Cristina Scafuto & Roberto Lima Ruas & Marcos Rogério , 2023. "Determining Factors on Green Innovation Adoption: An Empirical Study in Brazilian Agribusiness Firms," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    13. Chen, Chih Cheng, 2017. "Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties," Omega, Elsevier, vol. 67(C), pages 60-80.
    14. Shao, Jun & Wang, Lianghu, 2023. "Can new-type urbanization improve the green total factor energy efficiency? Evidence from China," Energy, Elsevier, vol. 262(PB).
    15. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    16. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    17. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    18. Wang, Yi & Wang, Huiping, 2023. "Spatial spillover effect of urban sprawl on total factor energy ecological efficiency: Evidence from 272 cities in China," Energy, Elsevier, vol. 273(C).
    19. Bo Hsiao & Li-Hsueh Chen, 2019. "Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1009-1043, May.
    20. Tingting Xiao & Zhong Liu, 2023. "Air Pollution and Enterprise Energy Efficiency: Evidence from Energy-Intensive Manufacturing Industries in China," Sustainability, MDPI, vol. 15(7), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:29:y:2024:i:2:p:1762-1780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.