IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i4p3954-3970.html
   My bibliography  Save this article

Estimating price impact via deep reinforcement learning

Author

Listed:
  • Yi Cao
  • Jia Zhai

Abstract

Price impact is the adverse change of the asset price against trader's action. As a crucial part of the indirect trading cost, price impact has attracted increasing attention in both econometric and data science literature. In this paper, we draw upon both strands of the literature and develop a deep neural network enhanced recursive (DeRecv) model to estimate temporary and permanent price impact of an order or trade. The temporary price impact is calculated as the sum of the expected immediate impact at each time point after taking action in an ad hoc market condition. The permanent price impact is defined as a new permanent level at which the information of the incoming order is entirely absorbed by the market. Through the experimental evaluation based on data from 10 stocks at NASDAQ and Shanghai Stock Exchange, we show that the proposed DeRecv model is better than the reinforcement learning model and the traditional vector autoregressive model.

Suggested Citation

  • Yi Cao & Jia Zhai, 2022. "Estimating price impact via deep reinforcement learning," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3954-3970, October.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:3954-3970
    DOI: 10.1002/ijfe.2353
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2353
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    3. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    4. Ying Jiang & Yi Cao & Xiaoquan Liu & Jia Zhai, 2019. "Volatility modeling and prediction: the role of price impact," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2015-2031, December.
    5. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-651.
    6. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    7. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    8. Philip, R., 2020. "Estimating permanent price impact via machine learning," Journal of Econometrics, Elsevier, vol. 215(2), pages 414-449.
    9. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. F. Campigli & G. Bormetti & F. Lillo, 2022. "Measuring price impact and information content of trades in a time-varying setting," Papers 2212.12687, arXiv.org, revised Dec 2023.
    3. Philip, R., 2020. "Estimating permanent price impact via machine learning," Journal of Econometrics, Elsevier, vol. 215(2), pages 414-449.
    4. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2010. "The Price Impact of Order Book Events," Papers 1011.6402, arXiv.org, revised Apr 2011.
    5. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    6. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    7. Eleanor Xu, Xiaoqing & Chen, Peter & Wu, Chunchi, 2006. "Time and dynamic volume-volatility relation," Journal of Banking & Finance, Elsevier, vol. 30(5), pages 1535-1558, May.
    8. Chung, Kee H. & Chuwonganant, Chairat & Jiang, Jing, 2008. "The dynamics of quote adjustments," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2390-2400, November.
    9. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    10. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
    11. Chung, Kee H. & Li, Mingsheng & McInish, Thomas H., 2005. "Information-based trading, price impact of trades, and trade autocorrelation," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1645-1669, July.
    12. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    13. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    14. Alexander, Gordon J. & Peterson, Mark A., 2007. "An analysis of trade-size clustering and its relation to stealth trading," Journal of Financial Economics, Elsevier, vol. 84(2), pages 435-471, May.
    15. Jeffrey R. Black & Pankaj K. Jain & Wei Sun, 2023. "Trade-time clustering," Review of Quantitative Finance and Accounting, Springer, vol. 60(3), pages 1209-1242, April.
    16. Doan, Bao & Vo, Duc Hong, 2021. "Is there any information content of traded stocks in an emerging market? Evidence from Vietnam," International Economics, Elsevier, vol. 167(C), pages 78-87.
    17. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    18. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    19. Laurini, Márcio Poletti & Furlani, Luiz Gustavo Cassilatti & Portugal, Marcelo Savino, 2008. "Empirical market microstructure: An analysis of the BRL/US$ exchange rate market," Emerging Markets Review, Elsevier, vol. 9(4), pages 247-265, December.
    20. Onur, Esen & Roberts, John S. & Tuzun, Tugkan, 2023. "Trader positions and aggregate portfolio demand," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:3954-3970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.