IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i12p2015-2031.html
   My bibliography  Save this article

Volatility modeling and prediction: the role of price impact

Author

Listed:
  • Ying Jiang
  • Yi Cao
  • Xiaoquan Liu
  • Jia Zhai

Abstract

In this paper, we are interested in exploring the role of price impact, derived from the order book, in modeling and predicting stock volatility. This is motivated by the market microstructure literature that examines the mechanics of price formation and its relevance to market quality. Using a comprehensive dataset of intraday bids, asks, and three levels of market depths for 148 stocks in the Shanghai Stock Exchange from 2005 to 2016, we find substantial intraday impact from incoming bid and ask limit and market orders on stock prices. More importantly, the permanent price impact at the daily level is a significant determinant of stock volatility dynamics as suggested by the panel VAR estimation. Furthermore, when we augment traditional volatility models with the time series of daily price impact, the augmented models produce significantly more accurate volatility predictions at the one-day ahead forecasting horizon. These volatility predictions also offer economic gains to a mean-variance utility investor in a portfolio setting.

Suggested Citation

  • Ying Jiang & Yi Cao & Xiaoquan Liu & Jia Zhai, 2019. "Volatility modeling and prediction: the role of price impact," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2015-2031, December.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:12:p:2015-2031
    DOI: 10.1080/14697688.2019.1636123
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1636123
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1636123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Cao & Jia Zhai, 2022. "Estimating price impact via deep reinforcement learning," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3954-3970, October.
    2. Fei, Tianlun & Liu, Xiaoquan, 2021. "Herding and market volatility," International Review of Financial Analysis, Elsevier, vol. 78(C).
    3. Tianlun Fei & Xiaoquan Liu & Conghua Wen, 2023. "Forecasting stock return volatility: Realized volatility‐type or duration‐based estimators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1594-1621, November.
    4. Bruno Deschamps & Tianlun Fei & Ying Jiang & Xiaoquan Liu, 2022. "Procyclical volatility in Chinese stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 1117-1144, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:12:p:2015-2031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.