IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i4p3864-3880.html
   My bibliography  Save this article

Detecting crisis vulnerability using yield spread interconnectedness

Author

Listed:
  • Fernando Garcia Alvarado

Abstract

This paper explores the interconnections among foreign term spreads across different economies and their systemic implications on crisis vulnerability. The term spread, understood as the difference between long‐term and short‐term interest rates on Treasury securities, has a well‐known predictive ability to forecast economic recessions in the short‐run. An initial explanatory analysis evidences an increasing correlation between term spreads in the recent years and, in particular, the constitution of country clusters whose term structures share common latent factors. Moreover, these correlations seem to have augmented after the last international financial crisis. Further, the results from a probit model considering domestic term spreads, supply shocks on oil and energy prices, and an international term spread network structure reveal a statistically significant effect of term spread interconnectedness on future economic output. Following, this paper empirically shows how an increasing number of Granger‐causality in‐degree connections may be associated with a higher crisis vulnerability in the short‐run. Additionally, a panel data regression corroborates the latter result to be robust under a wide range of conditions. Thus, an economy whose term spread is significantly caused in the Granger sense by external yield rates may be more prone to experience future recessions.

Suggested Citation

  • Fernando Garcia Alvarado, 2022. "Detecting crisis vulnerability using yield spread interconnectedness," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3864-3880, October.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:3864-3880
    DOI: 10.1002/ijfe.2191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2191
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard, Henri & Gerlach, Stefan, 1998. "Does the Term Structure Predict Recessions? The International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 195-215, July.
    2. Claudio Borio & Mathias Drehmann & Dora Xia Author-X-Name_First: Dora, 2019. "Predicting recessions: financial cycle versus term spread," BIS Working Papers 818, Bank for International Settlements.
    3. Tuomas Antero Peltonen & Michela Rancan & Peter Sarlin, 2019. "Interconnectedness of the banking sector as a vulnerability to crises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 963-990, April.
    4. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    5. Moneta, Fabio, 2003. "Does the yield spread predict recessions in the euro area?," Working Paper Series 294, European Central Bank.
    6. Jorion, Philippe & Mishkin, Frederic, 1991. "A multicountry comparison of term-structure forecasts at long horizons," Journal of Financial Economics, Elsevier, vol. 29(1), pages 59-80, March.
    7. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    8. Michael D. Bauer & Thomas M. Mertens, 2018. "Information in the Yield Curve about Future Recessions," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    9. Martínez-Jaramillo, Serafín & Pérez, Omar Pérez & Embriz, Fernando Avila & Dey, Fabrizio López Gallo, 2010. "Systemic risk, financial contagion and financial fragility," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2358-2374, November.
    10. Joseph E. Stiglitz, 2010. "Risk and Global Economic Architecture: Why Full Financial Integration May Be Undesirable," American Economic Review, American Economic Association, vol. 100(2), pages 388-392, May.
    11. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    12. I‐Doun Kuo & Cathy Yi‐Hsuan Chen & Kai‐Min Huang, 2019. "Expectation hypothesis and term structure anomaly," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 1017-1029, April.
    13. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    14. Arturo Estrella, 2005. "Why Does the Yield Curve Predict Output and Inflation?," Economic Journal, Royal Economic Society, vol. 115(505), pages 722-744, July.
    15. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    16. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    17. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    2. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    3. Harri Pönkä & Markku Stenborg, 2020. "Forecasting the state of the Finnish business cycle," Finnish Economic Papers, Finnish Economic Association, vol. 29(1), pages 81-99, Spring.
    4. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    5. Rebecca Stuart, 2020. "Monetary regimes, the term structure and business cycles in Ireland, 1972–2018," Manchester School, University of Manchester, vol. 88(5), pages 731-748, September.
    6. Christiansen, Charlotte, 2013. "Predicting severe simultaneous recessions using yield spreads as leading indicators," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.
    7. Huseyin Kaya, 2013. "On the Predictive Power of Yield Spread for Future Growth and Recession: The Turkish Case," Working Papers 010, Bahcesehir University, Betam, revised Mar 2013.
    8. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    9. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    10. Knut Lehre Seip & Dan Zhang, 2021. "The Yield Curve as a Leading Indicator: Accuracy and Timing of a Parsimonious Forecasting Model," Forecasting, MDPI, vol. 3(2), pages 1-16, May.
    11. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    12. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    13. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    14. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    15. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    16. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    17. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.
    18. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    19. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    20. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:4:p:3864-3880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.