IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v26y2021i2p2674-2689.html
   My bibliography  Save this article

Uncertain SBM data envelopment analysis model: A case study in Iranian banks

Author

Listed:
  • Mohammad Jamshidi
  • Masoud Sanei
  • Ali Mahmoodirad
  • Farhad Hoseinzadeh Lotfi
  • Ghasem Tohidi

Abstract

Data envelopment analysis (DEA) is a strong analytical tool and methodology for evaluating the relative efficiency of decision‐making units (DMUs). The DEA models require inputs and outputs, which are equipped with precise information. However, the real‐world inputs and outputs are probably so changeable and complicated that cannot be measured accurately. Consequently, this conflict leads to the analysis of uncertain DEA models. This paper aims to analyze the slacks‐based measure (SBM) model in an uncertain environment where the uncertain inputs and outputs are belief degree‐based uncertainty. The belief degree‐based uncertainty is useful for the cases in which no historical information of an uncertain event is available. As a solution methodology, the uncertain SBM model is converted to a crisp form by using three approaches separately: expected value model, expected value and chance‐constrained model, and dependent chance‐constrained model. Additionally, an alternative uncertain model is introduced to reveal differences of DMUs rankings in three crisp methods. Finally, an applied scenario regarding the Iranian banking system is documented to present the new models.

Suggested Citation

  • Mohammad Jamshidi & Masoud Sanei & Ali Mahmoodirad & Farhad Hoseinzadeh Lotfi & Ghasem Tohidi, 2021. "Uncertain SBM data envelopment analysis model: A case study in Iranian banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2674-2689, April.
  • Handle: RePEc:wly:ijfiec:v:26:y:2021:i:2:p:2674-2689
    DOI: 10.1002/ijfe.1927
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.1927
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.1927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    3. Sueyoshi, Toshiyuki, 1999. "DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives," Omega, Elsevier, vol. 27(3), pages 315-326, June.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Entani, Tomoe & Maeda, Yutaka & Tanaka, Hideo, 2002. "Dual models of interval DEA and its extension to interval data," European Journal of Operational Research, Elsevier, vol. 136(1), pages 32-45, January.
    6. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    7. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    8. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    9. Waichon Lio & Baoding Liu, 2018. "Uncertain data envelopment analysis with imprecisely observed inputs and outputs," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 357-373, September.
    10. Meilin Wen & Linhan Guo & Rui Kang & Yi Yang, 2014. "Data Envelopment Analysis with Uncertain Inputs and Outputs," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, August.
    11. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    12. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    15. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashem Omrani & Arash Alizadeh & Ali Emrouznejad & Zeynab Oveysi, 2023. "A novel best‐worst‐method two‐stage data envelopment analysis model considering decision makers' preferences: An application in bank branches evaluation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3593-3610, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    2. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    3. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    4. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Bolós, V.J. & Benítez, R. & Coll-Serrano, V., 2024. "Chance constrained directional models in stochastic data envelopment analysis," Operations Research Perspectives, Elsevier, vol. 12(C).
    6. Bao Jiang & Wenxue Feng & Jian Li, 2022. "Uncertain random data envelopment analysis for technical efficiency," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 1-20, March.
    7. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    8. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    9. Chien-Ming Chen & Magali A. Delmas, 2012. "Measuring Eco-Inefficiency: A New Frontier Approach," Operations Research, INFORMS, vol. 60(5), pages 1064-1079, October.
    10. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    11. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    12. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    13. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    14. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    15. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    16. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    17. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    18. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    19. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    20. Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:26:y:2021:i:2:p:2674-2689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.