IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v19y2010i5p549-561.html
   My bibliography  Save this article

Optimal clinical trial design using value of information methods with imperfect implementation

Author

Listed:
  • Andrew R. Willan
  • Simon Eckermann

Abstract

Traditional sample size calculations for randomized clinical trials are based on the tests of hypotheses and depend on somewhat arbitrarily chosen factors, such as type I and II errors rates and the smallest clinically important difference. In response to this, many authors have proposed the use of methods based on the value of information as an alternative. Previous attempts have assumed perfect implementation, i.e. if current evidence favors the new intervention and no new information is sought or expected, all future patients will receive it. A framework is proposed to allow for this assumption to be relaxed. The profound effect that this can have on the optimal sample size and expected net gain is illustrated on two recent examples. In addition, a model for assessing the value of implementation strategies is proposed and illustrated. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Andrew R. Willan & Simon Eckermann, 2010. "Optimal clinical trial design using value of information methods with imperfect implementation," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 549-561, May.
  • Handle: RePEc:wly:hlthec:v:19:y:2010:i:5:p:549-561
    DOI: 10.1002/hec.1493
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.1493
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.1493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    2. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2005. "The value of implementation and the value of information: combined and uneven development," Working Papers 005cherp, Centre for Health Economics, University of York.
    3. Simon Eckermann & Andrew R. Willan, 2007. "Expected value of information and decision making in HTA," Health Economics, John Wiley & Sons, Ltd., vol. 16(2), pages 195-209, February.
    4. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
    5. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    6. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    7. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2008. "The Value of Implementation and the Value of Information: Combined and Uneven Development," Medical Decision Making, , vol. 28(1), pages 21-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Eckermann & Andrew Willan, 2011. "Presenting Evidence and Summary Measures to Best Inform Societal Decisions When Comparing Multiple Strategies," PharmacoEconomics, Springer, vol. 29(7), pages 563-577, July.
    2. Simon Eckermann & Andrew R. Willan, 2016. "Expected Value of Sample Information with Imperfect Implementation," Medical Decision Making, , vol. 36(3), pages 282-283, April.
    3. Andrew R. Willan & Simon Eckermann, 2012. "Accounting For Between‐Study Variation In Incremental Net Benefit In Value Of Information Methodology," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1183-1195, October.
    4. Andrew Willan, 2011. "Sample Size Determination for Cost-Effectiveness Trials," PharmacoEconomics, Springer, vol. 29(11), pages 933-949, November.
    5. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    6. Penny Breeze & Alan Brennan, 2015. "Valuing Trial Designs from a Pharmaceutical Perspective Using Value‐Based Pricing," Health Economics, John Wiley & Sons, Ltd., vol. 24(11), pages 1468-1482, November.
    7. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    8. Jobjörnsson, Sebastian & Forster, Martin & Pertile, Paolo & Burman, Carl-Fredrik, 2016. "Late-stage pharmaceutical R&D and pricing policies under two-stage regulation," Journal of Health Economics, Elsevier, vol. 50(C), pages 298-311.
    9. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    10. Mohsen Sadatsafavi & Carlo Marra & Stirling Bryan, 2013. "Two‐Level Resampling As A Novel Method For The Calculation Of The Expected Value Of Sample Information In Economic Trials," Health Economics, John Wiley & Sons, Ltd., vol. 22(7), pages 877-882, July.
    11. Kasper Johannesen & Magnus Janzon & Tomas Jernberg & Martin Henriksson, 2020. "Subcategorizing the Expected Value of Perfect Implementation to Identify When and Where to Invest in Implementation Initiatives," Medical Decision Making, , vol. 40(3), pages 327-338, April.
    12. Stuart J. Wright & Mike Paulden & Katherine Payne, 2020. "Implementing Interventions with Varying Marginal Cost-Effectiveness: An Application in Precision Medicine," Medical Decision Making, , vol. 40(7), pages 924-938, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    2. Andrew Willan, 2011. "Sample Size Determination for Cost-Effectiveness Trials," PharmacoEconomics, Springer, vol. 29(11), pages 933-949, November.
    3. Andrew R. Willan & Simon Eckermann, 2012. "Accounting For Between‐Study Variation In Incremental Net Benefit In Value Of Information Methodology," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1183-1195, October.
    4. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    5. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    6. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    7. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    8. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    9. Daniele Bregantini, 2014. "Don’t Stop ’Til You Get Enough: a quickest detection approach to HTA," Discussion Papers 14/04, Department of Economics, University of York.
    10. Simon Eckermann & Andrew Willan, 2011. "Presenting Evidence and Summary Measures to Best Inform Societal Decisions When Comparing Multiple Strategies," PharmacoEconomics, Springer, vol. 29(7), pages 563-577, July.
    11. Andres Alban & Stephen E. Chick & Martin Forster, 2023. "Value-Based Clinical Trials: Selecting Recruitment Rates and Trial Lengths in Different Regulatory Contexts," Management Science, INFORMS, vol. 69(6), pages 3516-3535, June.
    12. Haitham Tuffaha & Shelley Roberts & Wendy Chaboyer & Louisa Gordon & Paul Scuffham, 2015. "Cost-Effectiveness and Value of Information Analysis of Nutritional Support for Preventing Pressure Ulcers in High-risk Patients: Implement Now, Research Later," Applied Health Economics and Health Policy, Springer, vol. 13(2), pages 167-179, April.
    13. Elizabeth Fenwick & Karl Claxton & Mark Sculpher & Andrew Briggs, 2000. "Improving the efficiency and relevance of health technology assessent: the role of iterative decision analytic modelling," Working Papers 179chedp, Centre for Health Economics, University of York.
    14. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    15. K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
    16. Andrew R. Willan & Matthew E. Kowgier, 2008. "Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate," Health Economics, John Wiley & Sons, Ltd., vol. 17(7), pages 777-791, July.
    17. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    18. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    19. N. J. Welton & A. E. Ades & D. M. Caldwell & T. J. Peters, 2008. "Research prioritization based on expected value of partial perfect information: a case‐study on interventions to increase uptake of breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 807-841, October.
    20. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:19:y:2010:i:5:p:549-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.