IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i5p1010-1026.html
   My bibliography  Save this article

High‐temperature CO2 removal from CH4 using silica membrane: experimental and neural network modeling

Author

Listed:
  • Sami Ullah
  • Mohammed A. Assiri
  • Abdullah G. Al‐Sehemi
  • Mohamad Azmi Bustam
  • Hafiz Abdul Mannan
  • Firas A. Abdulkareem
  • Ahmad Irfan
  • Sidra Saqib

Abstract

Inorganic membranes can operate under harsh conditions. However, successful synthesis of inorganic membranes is still challenging, and its performance depends on many factors. This work reports the effect of dip‐coating duration, inlet pressure, and inlet flow rate on the flux, permeability, and selectivity of silica membranes. A silica membrane was prepared by the deposition of silica sol onto porous alumina support. The permeability test was conducted at 100 °C using a single gas of CO2 and CH4. The highest flux was observed at the maximum inlet pressure and inlet flow rate for the membrane prepared at the minimum dip‐coating duration. The neural network modeling of the membrane predicted permeabilities showed a considerably high validity regression (R ≈ 0.99) of the predicted data linked to the experimental sets. The separation factor (α) was the highest at the maximum dip‐coating duration. The synthesized silica membrane has potential for CO2/CH4 separation under harsh operating conditions. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Sami Ullah & Mohammed A. Assiri & Abdullah G. Al‐Sehemi & Mohamad Azmi Bustam & Hafiz Abdul Mannan & Firas A. Abdulkareem & Ahmad Irfan & Sidra Saqib, 2019. "High‐temperature CO2 removal from CH4 using silica membrane: experimental and neural network modeling," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(5), pages 1010-1026, October.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:5:p:1010-1026
    DOI: 10.1002/ghg.1916
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1916
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukhtar, Ahmad & Ullah, Sami & Inayat, Abrar & Saqib, Sidra & Mellon, Nurhayati Binti & Assiri, Mohammed Ali & Al-Sehemi, Abdullah G. & Khan Niazi, Muhammad Bilal & Jahan, Zaib & Bustam, Mohamad Azmi , 2021. "Synthesis-structure-property relationship of nitrogen-doped porous covalent triazine frameworks for pre-combustion CO2 capture," Energy, Elsevier, vol. 216(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:5:p:1010-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.