IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i5p927-941.html
   My bibliography  Save this article

Development and evaluation of the coaxial cable casing imager: a cost‐effective solution to real‐time downhole monitoring for CO 2 sequestration wellbore integrity

Author

Listed:
  • Yurong Li
  • Baokai Cheng
  • Wenge Zhu
  • Hai Xiao
  • Runar Nygaard

Abstract

CO 2 leakage is a major concern in a geological carbon sequestration projects due to adverse environmental consequences, where the main leakage risk is identified to be along existing wells through a thick, low‐permeable cap rock. To pursue robust and cost effective real‐time downhole monitoring technology for CO 2 sequestration wellbore integrity, a permanently deployed coaxial cable casing imager is developed and evaluated in laboratory in this paper. The prototype of the casing imager consists of evenly distributed coaxial cable strain sensors helically wrapped around the pipe. The system is deployed on both PVC pipe and steel pipe to test its performance in casing deformation monitoring, including axial compression, radial expansion, bending, and ovalization. The strain sensors are pre‐stressed and then helically wrapped onto the pipe with high strength epoxy. Multiple linear variable differential transformers (LVDTs) or strain gauges are used as an independent measurement of the actual pipe deformation in comparison to the casing imager measured pipe deformation. The test results demonstrated the ability of the lab‐scale casing imager prototype in real‐time casing deformation monitoring, including axial compression, radial expansion, bending, and ovalization, which would prove of great value in evaluating wellbore integrity state and providing early warnings of leakage risk that will contaminate the groundwater during CO 2 injection. The low cost and high robustness of the distributed coaxial cable sensors will greatly lower the downhole monitoring cost and increase the system longevity. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Yurong Li & Baokai Cheng & Wenge Zhu & Hai Xiao & Runar Nygaard, 2017. "Development and evaluation of the coaxial cable casing imager: a cost‐effective solution to real‐time downhole monitoring for CO 2 sequestration wellbore integrity," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 927-941, October.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:5:p:927-941
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1691
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changbing Yang & Susan D. Hovorka & Michael H. Young & Ramon Trevino, 2014. "Geochemical sensitivity to CO 2 leakage: detection in potable aquifers at carbon sequestration sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 384-399, June.
    2. Yurong Li & Wenge Zhu & Baokai Cheng & Runar Nygaard & Hai Xiao, 2016. "Laboratory evaluation of distributed coaxial cable temperature sensors for application in CO2 sequestration well characterization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(6), pages 812-823, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurong Li & Wenge Zhu & Baokai Cheng & Runar Nygaard & Hai Xiao, 2016. "Laboratory evaluation of distributed coaxial cable temperature sensors for application in CO2 sequestration well characterization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(6), pages 812-823, December.
    2. Changbing Yang & Keith Jamison & Lianqing Xue & Zhenxue Dai & Susan Hovorka & Leif Fredin & Ramón Treviño, 2017. "Quantitative assessment of soil CO 2 concentration and stable carbon isotope for leakage detection at geological carbon sequestration sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 680-691, August.
    3. Changbing Yang & Ramón H. Treviño & Susan D. Hovorka & Jesus Delgado‐Alonso, 2015. "Semi‐analytical approach to reactive transport of CO 2 leakage into aquifers at carbon sequestration sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 786-801, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:5:p:927-941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.